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Abstract: 

A methodology is presented for the systematic identification of demand-side management (DSM) potential 
using mathematical programming techniques. For optimization of energy supply system (ESS), energy 
demands are usually considered as fixed constraints. However, assuming fixed demands leads to 
economically suboptimal solutions for the overall system. Thus, DSM measures should be integrated into the 
design of energy supply systems.  
DSM measures are—by definition—demand- and thus case-specific. Therefore, problem-specific models 
and tools are required to achieve the integrated design of energy demand and supply. In this work, we 
present a methodology simultaneously considering supply and demand side, without requiring an integrated 
model. This methodology provides guidance for process engineers by identifing time steps with large 
potential for cost reduction through DSM. 
The proposed method consists of two steps motivated by the two dimensions of a demand profile: 1. At what 
time is it most valuable to reduce the demand? 2. How much energy demand reduction is most valuable? To 
identify the most promising time steps for DSM measures, the derivative of the objective function is 
evaluated. Subsequently, the identified time steps are analysed to determine the optimal amount of the 
demand reduction by maximizing the improvements of the objective function. The improvement in the 
objective function quantifies the DSM potential. The presented approach allows to employ a detailed 
mathematical model of the ESS accounting for time-varying load profiles, continuous equipment sizing, and 
part-load dependent operating efficiencies. In contrast, the process model is represented in a very simplified 
way by variations of the demand time series. Thus, the presented approach is applicable to various process 
domains without the need for detailed process knowledge.  
The benefits of the novel methodology are illustrated for an industrial real-world example. In particular, 
counterintuitive results are obtained such as time steps where demand reductions lead to increased cost. In 
summary, the presented methodology guides the process engineer towards cost savings through process 
modifications based on well-founded optimization results. 
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1. Introduction 

We present an optimization-based methodology for the systematic identification of potential for 

cost savings by demand-side management (DSM) in energy systems. Energy systems consist of the 

energy supply system (ESS) and the process system (PS) (Fig. 1): The energy supply system 

converts primary and secondary energy to final energy flows required by the process system. The 

process system employs the provided energy in technical processes, e.g., manufacturing or heating. 

Today, energy supply system and process system are usually assumed to interact via a fixed 

interface: The process requests fixed demands (heating, cooling, electricity, etc.) from the ESS; the 

requested energy flows are provided by the energy supply system as fixed constraints. Fixing 

demands allows for analysing the energy supply system and process system independently. 

Independent analysis of both systems is less complex and allows the use of domain-specific tools. 

In practice, energy supply system and process system are usually anyhow operated by separate 



 

divisions in a company (or even two separate companies) with different decision makers. However, 

an independent analysis of the ESS and the PS neglects any synergies, and thus usually leads to 

suboptimal solutions for the overall energy system. Hence, for an optimal overall energy system 

design, ESS and PS should be considered simultaneously [1, 2].  

 
Fig. 1.  A general energy system consists of two sub-systems: Energy supply system and process 

system. A fixed interface is usually assumed between the two sub-systems allowing for independent 

optimization. The independent analysis neglects interactions between the sub-systems yielding a 

suboptimal solution for the complete energy system. 

To overcome the limitation of an independent analysis, energy storage is commonly introduced in 

the system model at the interface between the two sub-systems (ESS and PS) to still allow for 

decoupled analysis and optimization [3, 4]. Considering degrees of freedom of the PS in the design 

of ESS is commonly referred to as demand-side management (DSM). The potential and 

opportunities of DSM are well known and widely discussed in literature especially for electricity 

markets and grids [5, 6, 7]; in this context, smart- or intelligent grids are intensively addressed [8, 

9]. The DSM concept can also be transferred to other utilities such as heating demand [10, 3]. 

However, integrating the analysis of ESS and PS into one holistic optimization model [11, 12] 

requires a large and case-specific model of the process and thus limits the level of detail in the 

model. In particular, a new model of the process system needs to be developed for every design 

task. In contrast, the energy supply system will be very similar for a wide variety of applications.  

In this paper, we present a methodology simultaneously considering the energy supply system and 

process system to systematically identify DSM potential without requiring an integrated, problem-

specific process model. The process system is considered on a generic level ensuring the reusability 

of the described methodology for very different applications. In contrast, a detailed model [13] is 

employed for the energy supply system, as the energy supply system is similar for different 

applications. The detailed model accounts for time-varying load profiles, continuous sizing of 

equipment and part-load dependent operating efficiencies. The aim of the described methodology is 

to enable synergies between the supply- and the demand-side by identifying potential for cost 

savings through DSM based on an independently optimized ESS. Our approach determines the 

most promising time steps for DSM, the optimal size of DSM measures, and quantifies potential 

savings. Based on this information, the energy systems operator/designer could guide the process 

engineer to exploit promising process modifications.  

In Section 2, the proposed methodology is introduced together with the employed mixed-integer 

linear program (MILP) model. In Section 3, the methodology is illustrated for a real-world problem. 

Conclusions are drawn in Section 4. 

2. DSM potential in optimization of energy supply systems 
The proposed methodology systematically identifies potential for more efficient energy use through 

DSM measures. The analysis is based on an independently optimized energy supply systems. The 

methodology consists of two steps addressing the two dimensions of a demand profile (Fig. 2) by 

answering two questions: First, at what time is it (most) valuable to reduce the demand? Second, 

how much energy demand reduction is (most) valuable? Accordingly, in the first step, promising 

time steps are identified by evaluating the derivative of the objective function with respect to the 

corresponding demands. In our approach, we assume that the time steps with the largest derivative 



 

are most promising for DSM measures. If an economic objective is used, the derivative corresponds 

to the marginal costs. Marginal costs have successfully been used by Lozano et al. [14] to describe 

different operation modes of a trigeneration system. However, local information at the optimal 

design point of the ESS is not sufficient to quantify the DSM potential. Therefore, in the second 

step of the proposed methodology, improvements in the objective are evaluated as a function of the 

amount the energy demand is reduced. For the evaluations, a detailed model of the ESS is used.  

 

Fig. 2.  The two dimensions of a demand profile motivate the two steps of the proposed 

methodology: 1. At what time is it (most) valuable to reduce the demand? 2. How much energy 

demand reduction is (most) valuable? 

2.1. MILP model for ESS optimization 

Our approach is based on the optimization of energy supply systems. While the suggested approach 

is generic, we here employ the MILP model presented by Voll et al. [13]. The objective function f  

is assumed to be minimized without any loss of generality: 
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The continuous degrees of freedom ntV  and N

nV  represent the operation in time step t  of component 

n  as well as the nominal capacity of component n , respectively. The binary degrees of freedom ny  

and nt  represent whether the component n  is build and operated in time step t , respectively. The 

components have to meet the energy demands tE  (heating, cooling and electricity) for every time 

step t , Eq. (2). Moreover, minimum and maximum nominal capacity limits, linearized part-load 

performance curves, minimum part load operation, and linearized investment cost functions are 

considered in the model (for equations: see Appendix A). The equipment considered in this work 

encompasses gas-fueled boilers and gas engines, electricity-driven turbo-compression chillers, and 

thermally driven absorption chillers.  

2.2. Step 1: Time steps with high DSM potential 

Our approach is initialized by the design point  tEf   of the optimized energy supply system. The 

derivative of the objective function is calculated with respect to reduction of the energy demand. 

The derivative is evaluated for each time step t  of all demand profiles; it determines the sensitivity 

of the objective function to the amount the energy demand is reduced, the so-called reduction level 

tE . Here, the derivative is approximated by finite differences 
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For minimization problems, a negative derivative with respect to demand reductions indicates 
improvements in the objective function. Improvements in the objective function by demand 

reductions represent potential for DSM measures. Thus, time steps with high negative derivatives 

have high DSM potential and are selected as most promising time steps 
pt .  

The selection of 
pt  is based on the derivative 
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 of the objective function for the reference 

demands tE , i.e. in the limit 0 tE . For higher reduction levels tE , this derivative can change. 

Selecting the highest derivatives at 0 tE is thus a heuristic assuming a concave dependency of 

the DSM potential on the reduction levels tE .  

In summary, step 1 of the proposed methodology answers the question: At what time is it (most) 

valuable to reduce the demand? The selection can be done for a fixed number of time steps with the 
highest negative derivatives, or a threshold can be defined for the derivative, below which all time 

steps are selected. 

2.3. Step 2: Improvement of objective function 

In step 2 of the proposed methodology, the time steps  
pt  identified in step 1 are analysed in more 

detail. The goal is to determine how much the energy demand should be reduced. To quantify the 

DSM potential, improvements of the objective function value f  are obtained depending on the 

demand reduction level tE . The improvements f  are determined by the difference between the 

optimal objective function values for the reduced energy demand  tt EEf    and for the 

reference energy demand  tEf   

      p , tEfEEfEf tttt            (4) 

The improvements of the objective function f  provide information about how much energy 

demand reduction tE  is (most) valuable for the identified time steps. 

2.4. Decisions in operation- and structure optimization 

The decisions taken in energy systems optimization depend on the objective of the study. In 

general, we distinguish between optimization of operation and structure [15]. These two classes of 

optimization differ in time horizons and decision options (Table 1). For the identification of DSM 

potential, the two optimization classes differ in the possible improvements and thus in DSM 

potential. For illustration, consider a change in the peak demand: The possible investment in a new 

component to meet this peak demand is conceptually different from changes in the operation of an 

existing energy supply system. Still, the described methodology handles both optimization of 

operation and structure.  

Table 1.  Difference between optimization of operation and structure: Time horizon and possible 

decision including degrees of freedom. 

 Operation Optimization Structure Optimization 

Time horizon Days – year Years – decades 

Decisions Operation of components:  

ntntV ,  

Structure of ESS and operation of components: 

ntntnn VyV ,,,N   

 



 

3. Illustrative case study 
The presented methodology is illustrated based on an industrial real-world case study (for details 

see Appendix A and [13]). The cooling, heating and electricity demand are considered for different 

buildings (e.g., production, laboratory, facilities, offices, etc.). Two 24 hour-based scenarios are 

analysed (Fig. 3): Scenario “North” (N) has high heating demand compared to the cooling demand, 

whereas the cooling demand in Scenario “South” (S) is higher than the heating demand. 

 

Fig. 3.  Energy demand profiles tE  (Cooling, heating and electricity) for time steps t  of an 

industrial real-world case study: Two 24 hour-based scenarios are selected: Scenario “North” 

(left) with high heating demand compared to the cooling demand and Scenario “south” (right) with 

high cooling demand compared to the heating demand. 

The total annualized costs (TC) of the energy supply system are considered as objective function 

(Eq. (1)). TC reflects the trade-off between energy costs and annualized investment cost in a single 

objective optimization 
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where ntU  is the input energy flow to unit n  in time step t  and 
nI  the investment cost for unit n .

Unp  is the specific cost of the input energy flow of component n  (i.e., gas

Up  or yelectricit

Up ) and 
tt  

the time interval of time step t . The annualized investment costs are based on the interest rate i  for 

the time horizon TCt . TC enables a comparison of the optimization of operation and structure (Sec. 

2.4.). To initialize our approach, we determine the optimal solution for the reference demand 

profiles: For the Scenario North the optimal structure is a complex trigeneration system consisting 

of one absorption chiller (AC), three compression chillers (CC), two boilers (B) and three combined 

heat and power (CHP) units (Table 2). The total annualized costs objective is 8.5 Mio€. The optimal 

structure for Scenario South consists of two AC, five CC and three CHP units (Table 2). The total 

annualized costs objective is 8.9 Mio€. 

Table 2. Nominal size MW /N

nV  and technology of the optimal structure of the ESS for Scenario 

North and Scenario South. (AC – adsorption chiller, CC – compression chiller, B – boiler, CHP – 

combined heat and power) 

Technology AC AC CC CC CC CC CC B B CHP CHP CHP 

North: MW /N

nV  0.35 - 0.90 1.75 0.70 - - 1.60 0.76 2.51 2.30 2.30 

South: MW /N

nV  3.87 1.89 1.10 0.50 4.05 2.74 1.58 - - 3.05 2.50 2.50 

 

 
 



 

3.1. Step 1: Identification of promising time steps for DSM 

Step 1 of the presented methodology (Sec. 2.2.) identifies promising time steps with high DSM 

potential. The derivative of the objective function with respect to the demand in the corresponding 

time step t  is here marginal annual costs 
 tE

TC





d

d
.  

 

Fig. 4.  The derivative of objective function TC with respect to the heating demand (top row) and 

cooling demand (bottom row) is shown to identify promising time steps 
pt  with high DSM potential, 

i.e. high negative derivatives. All time steps of Scenario N (left column) and Scenario S (right 

column) are evaluated considering optimization of operation (white bars) and structure (grey bars). 

A benchmark (dashed line) based on the common way to provide the energy flow with separate 

production is provided to give an orientation on the value of the derivative. 

In most time steps, we observe negative derivatives indicating DSM potential; even though the 

potential for DSM measures is small for some time steps. Therefore, a benchmark (dashed line) is 

provided to give an orientation on the value of the derivative, i.e., the DSM potential. The 

benchmark is based on the common way to provide the corresponding energy flow in separate 

generation: For the heating demand (top row), a boiler at nominal efficiency is the benchmark and 

the benchmark for the cooling demand (bottom row) is a compression chiller at nominal coefficient 

of performance. 

We observe a wide range of the derivative: from values slightly below zero to very high negative 

values. Thus, we classify the observed cases by comparing them to the benchmark; the cases are 

ordered by decreasing DSM potential starting with the highest: 

The derivative is more negative than the benchmark (Derivative < Benchmark):  

This condition is fulfilled at peak demand points for each scenario (Fig 4a: 9 h; Fig 4d: 18 h) for 

both optimization of operation and structure. The peak demands are an intuitive choice for time 

steps with high DSM potential and are also detected by the presented methodology, but without any 

need of heuristic knowledge. However, high DSM potential is also identified by the proposed 



 

methodology at unexpected time steps (Fig 4a: 12h and Fig 4b: 18h, structure optimization). In 

optimization of operation, DSM potential is high due to better utilization of the trigeneration in the 

ESS: The demand-ratio approaches the characteristic of the trigeneration system. For structure 

optimization, additionally, smaller equipment can be selected. 

Derivative ≈ Benchmark:  

In the corresponding time steps, parts of the demand are provided by the benchmark technology, 

operated near its nominal efficiency. The co-/trigeneration system is not affected by a reduction of 

the energy demand, such that there is no negative effect on the supply of other demands. Hence, the 

DSM potential is high.  

Benchmark < Derivative < 0:  

These conditions have less cost savings potential for DSM. We observe that this case occurs if 

cogeneration is operating in the reference solution. If one demand type is reduced, this result in cost 

savings, but the demand-ratio diverges from the characteristic of the co-/trigeneration resulting in 

extra costs for the extra supply of other energy types. Thus, the overall DSM potential is smaller 

due to negative effects on the co-/trigeneration in the ESS. 

0 < Derivative: 

A positive derivative indicates additional cost for a reduction of the energy demand (Fig 4a: 14h); 

this behaviour is counter-intuitive. It is observed at time steps with low heating- and high cooling 

demand. For these time steps the operation and design of the ESS is critical: Heat is completely 

supplied by the CHP units; hence reducing the heating demand results in less produced electricity to 

meet the electricity demand. As the ACs are operated at maximum load, the trigeneration cannot 

compensate this heating demand reduction either; thus, in this time step, heating demand reduction 

results in less electricity production by the CHP units which forces the system to buy extra 

electricity from the grid; the cost of electricity is higher than the cost of gas. Hence, this results in 

negative DSM potential for the heating demand in this time steps. 

The value of the derivatives of operation- (white bars) and structure optimization (grey bars, Fig. 4) 

is equal for many time steps: The structure of the ESS is optimal for both, the original and the 

reduced demand. Thus, the cost savings and DSM potential are only based on the operation of the 

ESS. The DSM potential of the optimization of operation represents a minimum for the 

optimization of structure which considers additional degrees of freedom. Hence, a difference in the 

DSM potential for optimization of operation and structure can be exploited for the identification of 

DSM measures resulting in structural changes of the optimal energy supply system and the 

corresponding time steps are crucial for the design of the ESS. 

Positive derivatives are not observed for structure optimization, but the DSM potential for structure 

optimization is still not significant for time steps with positive derivatives in the operation 

optimization. Nevertheless, the results from the operation optimization cannot be used to predict 

DSM potential on the structural level as the results differ significantly in some cases (e.g. Fig 4a: 12 

h; Fig 4d: 7 h). 

According to the methodology (Sec. 2.2.), the time steps 
pt  with the highest DSM potential are 

selected based on the highest negative derivatives and further analysed in step 2 of the proposed 

methodology. 

3.2. Step 2: Cost savings and reduction level 

In step 2 of the presented methodology, the most promising time steps 
pt  with the highest DSM 

potential identified by step 1 are investigated: For Scenario North, the largest derivatives are 

observed at 9 h and 14 h for heating- and cooling demand reduction respectively; in Scenario South 

the most promising time step is the same (18 h) for heating and cooling thus the second highest (7 

h) is also selected. As introduced in Sec. 2.3., the possible cost savings TC  are calculated for the 



 

selected time steps as a function of the demand reduction level tE  (Fig. 5). The results are only 

shown for a selection of the identified time steps to exemplify the observed trends.  

  

Fig. 5. Cost savings as a function of the reduction level tE  for promising time steps 
pt . Time steps 

from Scenario N (left column) and Scenario S (right column) are investigated for heating- (top row) 

and cooling demand (bottom row) reduction. The results are presented for a selection of the 

identified time steps to show the observed trends. Operation optimization (white bars) instances and 

structure optimization (grey bars) are shown. 

We observe different trends of the DSM potential depending on the reduction level: As a first type 

of trend, we see monotone decreasing objective functions, i.e., every demand reduction results in 

additional cost savings. This trend is found for heating demand reductions in Scenario South (Fig. 

5b) and cooling demand reductions in Scenario North (Fig. 5c) as well as for some cooling demand 

reductions in Scenario South (Fig. 5d: 18h, operation). Second, cases are observed with minima in 

the DSM potential: Further reduction of the demand can diminish cost savings (e.g. Fig 5d: 7 h, 

operation) and eventually lead to additional cost (e.g. Fig 5a: 9 h, operation) if the demand is 

reduced even more. The high heating demand reduction results in higher usage of the CCHP 

capacity in the system. If the adsorption chiller is operated at maximum a reduction of the heating 

demand results in less produced heat of the CHP engine and thus less produced electricity, which in 

turn needs to be bought from the grid. In sum, this results in extra cost for the energy supply. Thus, 

for these cases an optimal reduction level exists and a DSM measure should be limited to this 

reduction level. 

Moreover, all functions of the DSM potential are concave as assumed in step 1 (also for the time 

steps not shown). Thus, the identification of high DSM potential by a large derivative of the 

objective function at the reference demand  tE

TC
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d
 is reasonable (Sec. 2.2.). 

A decreasing DSM potential and optimal reduction levels are observed for both operation- and 

structure optimization. The magnitude of cost savings for structure optimization results in higher 



 

potential for all time steps and reduction levels due to the possibility of investment cost savings. 

The DSM potential for investment costs saving can be measured by the difference between the 

operation and structure optimization values (white and grey). 

4. Conclusions 
An optimization-based methodology is presented for the systematic identification of DSM potential 

in energy systems. Today, the two subsystems of an energy system (energy supply system and 

process system) are usually assumed to interact via a fixed interface and therefore analysed and 

optimized separately. The presented methodology considers the two sub-systems of an energy 

system simultaneously, but does not require an integrated model of the process system. In contrast, 

a detailed model of the energy supply system is employed as the ESS is very similar for different 

applications. Hence, the approach is applicable to various energy systems without detailed 

knowledge of the process.  

The presented methodology is applied to a real-world case study. The results show that methods for 

the systematic identification of DSM potential are needed to answer the question, at what time 

energy demand reduction is most valuable: Beside the time steps with demand peaks, non-intuitive 

time steps with high cost savings potential through DSM measures are identified by the proposed 

optimization-based methodology. Moreover, time steps are identified by the methodology for which 

a demand reduction results in additional cost. Hence, a heuristic just focusing on the demand peaks 

is not sufficient to identify time steps with high DSM potential.   

Subsequently, the methodology determines how much energy demand reduction is most valuable: 

Besides monotone increasing cost saving potential for higher energy demand reductions, some 

cases show an optimal reduction level: Higher energy demand reduction can diminish cost savings 

and can lead to additional cost in extreme cases. Therefore, the best amount of energy demand 

reduction by DSM measures needs to be determined by a systematic methodology. 

The proposed methodology is generic and thus capable to be applied to various energy systems 

optimization models to identify and quantify the system-inherent potential for DSM measures.   
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Appendix A 
This section describes the employed MILP model by Voll et al. [13], which is used for the 

illustrative case study in Chapter 3. In this model, several energy conversion technologies (Table 

A.1.) are considered for the design of the energy supply system.  

Table A.1.  The considered technologies with their thermal power range, investment cost range, 

maintenance cost and nominal coefficient of performance or nominal efficiency. 

technology thermal power range / 

MW 

investment cost / 

k€ 

Maintenance cost / 

% investment cost 

N

n

N COP ,n  

/ - 

Boiler 0.1 - 14.0 34 - 380 1.5 0.90 

CHP engine 0.5 - 3.2 230 - 850 10.0 0.87 

Adsorption chiller 0.1 - 6.5 75 - 520 4.0 0.67 

Turbo chiller 0.4 - 10.0 89 -1570 1.0 5.54 

 

The investment cost curves are linearized by piecewise linear functions, for all components n  and 

every segment h  the y-intercept nhI  and the gradient 
nhVd

dI








N

are given as parameters. 
N

~
nhV  is a 



 

continuous degree of freedom representing the nominal output power of a segment and 
nh  is a 

binary degree of freedom identifying weather the nominal output power is in the corresponding 

segment of the piecewise linear function: 
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nhV  are parameters representing the limits of the corresponding segment. 

Moreover, the part-load performance curves are represented by piecewise linear functions. Again, 

for all components n  and every segment g , the normalized y-intercept ngu  and the normalized 

gradient 
ngdv

du
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The bilinear product 
N~

nntg V  in Eq. A.4 and Eq. A.6 can be linearized according to Petersen [16] 

and [17]. For simplification, this is illustrated for 1g , thus ntntg  
~

. The bilinear product is 

substituted by an auxiliary continuous decision variable nt , therefore we need to introduce a time 

dependent variable nt  that takes the values of N

nV  for all time steps t  

ntVnnt  ,,N ,          (A.7) 

Now N

nV is substituted by nt in Eq. (A.1) - (A.6) and the bilinear product   ntnt   is substituted by

nt . Two linear constraints are added to guarantee the correct behaviour of nt : 
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The thermal and electrical nominal efficiency of the CHP engine is a function of the engine size, to 

capture this behaviour, the CHP model is portioned into size depended sub models: 

▪ Small: 0.5…1.4 MW,  410.0 ,460.0 elN,thN,    

▪ Medium: 1.4…2.3 MW,  446.0 ,424.0 elN,thN,    
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▪ Large:  2.3…3.2 MW,  482.0 ,388.0 elN,thN,    

To ensure that only one equipment size is selected, a constraint is added: 

CHP,LargeMediumSmall  nyyyy .       (A.10) 
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