
1. Introduction
In designing energy supply systems, several alternatives for design specifications are proposed, and
their performances are evaluated and compared in terms of some criteria such as annual total cost,
primary energy consumption, and CO2 emission.  The values of these performance criteria depend
on not only design specifications but also energy demands and operational strategies.  However,
many conditions under which energy demands are estimated have some uncertainty at the design
stage, which makes it impossible to estimate energy demands precisely.  If energy demands are esti-
mated certainly, and the performance criteria are evaluated based on certain energy demands, the
values of the performance criteria expected at the design stage may not be attained at the operation
stage.  This is because the energy demands which arise at the operation stage differ from those esti-
mated at the design stage.  Similarly, the differences in the values of the performance criteria
among the alternatives such as reductions in annual total cost, primary energy consumption, and

Relative Performance Evaluation of Energy Supply
Systems Under Uncertain Energy Demands

Ryohei Yokoyama a, Masato Fujita b, Masashi Ohkura c, and Tetsuya Wakui d

aDepartment of Mechanical Engineering, Osaka Prefecture University
Sakai, Osaka, Japan, yokoyama@me.osakafu-u.ac.jp, CA

bDepartment of Mechanical Engineering, Osaka Prefecture University
Sakai, Osaka, Japan, fujita@ese.me.osakafu-u.ac.jp

cDepartment of Mechanical Engineering, Osaka Prefecture University
Sakai, Osaka, Japan, ohkura@me.osakafu-u.ac.jp

dDepartment of Mechanical Engineering, Osaka Prefecture University
Sakai, Osaka, Japan, wakui@me.osakafu-u.ac.jp

Abstract:  
In designing energy supply systems, several alternatives for design specifications are proposed, and their
performances are evaluated and compared in terms of some criteria such as annual total cost, primary ener-
gy consumption, and CO2 emission.  Although the values of these performance criteria depend on not only
design specifications but also energy demands and operational strategies, energy demands are uncertain at
the design stage.  In this paper, a method of evaluating the relative performance for two energy supply sys-
tems under uncertain energy demands is proposed based on a linear model.  Uncertain energy demands
are expressed by intervals. The minimum and maximum, and consequently their interval of a relative per-
formance criterion for two energy supply systems are evaluated for all the possible energy demands within
their intervals.  An optimization problem included in this evaluation is formulated as a bilevel programming
problem, and it is transformed into a mixed-integer linear programming one by adopting the Karush-Kuhn-
Tucker conditions and fractional programming.  In addition, a hierarchical optimization method is proposed
to solve the problem efficiently.  A case study is conducted, and the relative difference, or reduction rate in
the annual total cost of a cogeneration system in comparison with a conventional energy supply system is
evaluated under uncertain energy demands.  The minimum and maximum, and consequently their interval of
the reduction rate are evaluated, and the corresponding energy demands and operational strategies are
found.  The influence of the uncertainty in energy demands on these results is also clarified.  Through the
case study, the validity and effectiveness of the proposed method are clarified.  

Keywords:  
Energy supply systems, Uncertainty, Relative performance, Interval analysis, Optimization, Mixed-integer
linear programming.

PROCEEDINGS OF ECOS 2015 - THE 28TH INTERNATIONAL CONFERENCE ON 
EEFFICIENCY, CCOST, OOPTIMIZATION, SSIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS 

JUNE 30-JULY 3, 2015, PAU, FRANCE 

 

 

      
     

      

           

m     

*    

 

  
T                   

                 
T                

                
                 

             
              

                    
               
                  

                      
        

T                    
               

 
          

  
a       
D  pump nominal diameter, m  
g  gravitational acceleration, m/s2 
  head, m 

k  label of pump/PAT, -  
n  rotational speed, rps  
N  number of pump/PAT experimental data, -  
P  power, W 
P      
P      
Q  volume flow rate, m3   
R  ratio function YP   

       
W      

Y         



CO2 emission depend on not only design specifications but also energy demands and operational
strategies.  Thus, the differences in the values of the performance criteria expected at the design
stage may not be obtained at the operation stage.  Therefore, designers should consider that energy
demands have some uncertainty, evaluate the robustness in the performance criteria against the
uncertainty, and design the systems rationally in consideration of the robustness.  In addition,
designers should evaluate the differences in the values of the performance criteria among the alter-
natives in consideration of the uncertainty in energy demands.
Verderame et al. reviewed many papers on planning and scheduling under uncertainty in multiple
sectors, and reviewed some papers on energy planning [1].  Zeng et al. also reviewed many papers
on optimization of energy systems planning under uncertainty [2].  In these review papers, the
approaches adopted for optimization of energy systems planning were categorized into three ones:
stochastic, fuzzy, and interval programming.  However, it is difficult for designers to specify sto-
chastic distribution and fuzzy membership functions for uncertain parameters in the first and sec-
ond approaches, respectively.  From the viewpoint of practical applications, it is much more mean-
ingful for designers to specify fluctuation intervals for uncertain parameters in the third approach.
Yokoyama and Ito proposed a robust optimal design method of energy supply systems in considera-
tion of the economic robustness against the uncertainty in energy demands based on the minimax
regret criterion [3].  Yokoyama et al. revised this robust optimal design method so that it can be
applied to energy supply systems with more complex configurations and larger numbers of periods
set to consider seasonal and hourly variations in energy demands [4].  Assavapokee et al. presented
a general framework for the robust optimal design based on the minimax regret criterion [5].
Yokoyama et al. also proposed a method of comparing two energy supply systems under uncertain
energy demands by utilizing a part of the revised robust optimal design method [4].  However, this
method cannot evaluate the relative differences but the absolute differences in the values of the per-
formance criteria, which means that although the method can evaluate the reductions in the values
of the performance criteria, it cannot evaluate the reduction rates.  On the other hand, Yokoyama
and Ito also proposed a robust optimal design method based on the relative robustness criterion [6].
Assavapokee et al. presented a general framework for the robust optimal design based on the rela-
tive robustness criterion [7].  This idea can be applied to the evaluation of the relative differences in
the values of the performance criteria.  
In this paper, a method of evaluating the relative performance for two energy supply systems under
uncertain energy demands is proposed based on a linear model.  Uncertain energy demands are
expressed by intervals.  The minimum and maximum, and consequently their interval of a relative
performance criterion for two energy supply systems are evaluated for all the possible energy
demands within their intervals.  An optimization problem included in this evaluation is formulated
as a bilevel programming one, and it is transformed into a mixed-integer linear programming
(MILP) one by adopting the Karush-Kuhn-Tucker conditions and fractional programming [8] for
the numerator and denominator, respectively, in the problem.  Since the denominator relates the
variables at all the periods, the problem cannot be solved in a reasonable computation time even by
a general commercial MILP solver.  Thus, a hierarchical optimization method is proposed to solve
the problem efficiently.  A case study is conducted, and the relative difference, or reduction rate in
the annual total cost of a cogeneration system in comparison with a conventional energy supply
system is evaluated under uncertain energy demands.  The minimum and maximum, and conse-
quently their interval of the reduction rate are evaluated, and the corresponding energy demands
and operational strategies are sought.  The influence of the uncertainty in energy demands on these
results is also examined.  Through the case study, the validity and effectiveness of the proposed
method are investigated.  

2. Evaluation of relative performance
Fundamentals for a method of evaluating the relative performance for two energy supply systems
under uncertain energy demands is presented here.  As design specifications, equipment capacities



and utility maximum demands xA and xB for energy supply systems A and B, respectively, are
assumed to be determined a priori.  The annual total cost is adopted here as the performance criteri-
on for the comparison, although any one may be adopted.  It is evaluated by the annualized costs
method as the sum of the annual capital cost of equipment, the annual demand charge of purchased
utilities, and the annual energy charge of purchased utilities.  The annual energy charge is the sum
of energy charges at periods on representative days in a typical year.  Since the annual total costs fA
and fB of systems A and B depend on energy demands y as well as operational strategies zA and zB,
respectively, zA and zB are determined so as to minimize fA and fB, respectively, subject to con-
straints such as performance characteristics of equipment and energy balance/supply-demand rela-
tionships for energy demands y.  This is because in fact the operational strategies can be adjusted
for energy demands which become certain at the operation stage.  It is assumed that the annual total
costs fA and fB and the constraints are linear with respect to y as well as zA and zB, respectively.  It
is also assumed that the equipment capacities and utility maximum demands xA and xB along with
the operational strategies zA and zB, respectively, satisfy the flexibility, or the feasibility in energy
supply for all the possible energy demands y.
Under the aforementioned conditions, the relative difference r in the annual total cost between sys-
tems A and B under certain energy demands y is expressed as

(1)

where ZA and ZB are the regions for all the possible values of zA and zB of systems A and B,
respectively, and depend on (xA, y) and (xB, y), respectively, through the constraints.  Eq. (1) is
also expressed as

(2)

or alternatively

(3)

The value of r depends on the energy demands y.  Under uncertain energy demands y, therefore, its
minimum and maximum are evaluated for all the possible values of y, and consequently their
interval [ , ] is obtained.  From Eqs. (2) and (3), the minimum and maximum of the relative dif-
ference in the annual total cost between systems A and B are expressed  as 

(4)

and

(5)

respectively.

3. Solution method
3.1. Reformulation of optimization problem
Equations (4) and (5) include optimization problems with hierarchical operations of maximization
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and minimization.  Thus, these optimization problems result in bilevel programming ones.  In addi-
tion, there exist the performance criteria for systems A and B in the numerator and denominator,
respectively, in Eq. (4), and vice versa in Eq. (5).  Since the forms of both the problems are the
same, the solution of the optimization problem in only Eq. (4) is sufficient.  Therefore, the follow-
ing optimization problem is investigated here:

(6)

First, the operation of minimization with respect to zB in the denominator is moved forward to
reformulate Eq. (6) as

(7)

Then, this problem is reformulated as an ordinary one level optimization one by applying the
Karush-Kuhn-Tucker conditions to the minimization problem at the lower level.  This reformula-
tion produces the complementarity constraint which includes the inner product of inequality con-
straint vectors and the corresponding Lagrange multiplier vectors.  Then, binary variable vectors
and inequality constraints are introduced to linearize the nonlinear terms due to this complementari-
ty condition exactly [9].
In addition, the problem is reformulated into an MILP one by the fractional programming method
[8].  On the assumption that the value of the denominator in Eq. (7) is positive, its inverse is
replaced with a continuous variable, and the operation variables zA and zB as well as the energy
demands y are replaced with continuous variables which are the products of themselves and the
inverse of the denominator.  
The aforementioned reformulations convert Eq. (7) to the following equation:

(8)

where F is the converted objective function to be maximized.  The arguments are the variables to
be determined, and their regions are omitted here because they are related with one another.  Here,
mA1 and mA2, and lA1 and lA2 are Lagrange multiplier vectors corresponding to the equality and
inequality constraint vectors, respectively, in the numerator in Eq. (7).  dA1 and dA2 are binary vari-
able vectors introduced to linearize the nonlinear terms due to the complementarity condition.  q is
a continuous variable for the denominator in Eq. (7), and , , and are the products of zA, zB,
and y, respectively, multiplied by q.  
A detailed procedure for reformulating the bilevel programming problem of Eq. (7) to the MILP
problem of Eq. (8) is shown in the appendix.

3.2. Hierarchical optimization method
Any general commercial MILP solvers can be applied to solving the optimization problem of Eq.
(8).  However, the number of binary variables can increase drastically with the complexity of ener-
gy supply systems, especially system A, and the number of periods set to consider seasonal and
hourly variations in energy demands.  In addition, the inverse of the denominator in Eq. (7) q
relates the other variables and the constraints at all the periods.  These features make it difficult to
solve the problem even by general commercial MILP solvers.  However, if the value of q is
assumed, the other variables and the constraints can be divided into subsets independent at the
respective periods.  Although the value of q cannot be assumed easily because q is a continuous
variable, the range for the value of q may be assumed.  Therefore, the following hierarchical opti-
mization method is proposed to solve the problem more efficiently.  
The method is composed of the following two hierarchical levels.  At the upper level, the branch
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and bound method is applied to search the range for the value of q where its optimal value exists by
adopting q as the unique branching variable.  For this purpose, the lower and upper limits for q are
determined in advance as follows:

(9)

and

(10)

respectively.  The optimization problem in Eq. (9) is a bilevel linear programming one, and it can
be solved by converting it into an ordinary one level MILP problem based on a part of the afore-
mentioned reformulations.  The optimization problem in Eq. (10) is an ordinary linear program-
ming one, and it can be solved easily.  
The overall range [ , ] for the value of q is divided into its sub-ranges by the branching opera-
tion, and the MILP problem is solved in each sub-range.  If the MILP problem in a sub-range can-
not be solved easily, the sub-range is further divided into smaller ones, and the MILP problem is
solved again in each smaller sub-range.  If the MILP problem in a sub-range can be solved, and the
value of the objective function for its optimal solution is larger than an upper bound for the optimal
value of the objective function in the overall range, the incumbent solution and the upper bound in
the overall range are replaced with this optimal solution and its value of the objective function,
respectively.  If the MILP problem in a sub-range is infeasible, the sub-range is fathomed by the
bounding operation.  Even if the MILP problem in a sub-range cannot be solved easily, if an upper
bound for the optimal value of the objective function in the sub-range becomes smaller than the
upper bound for the optimal value of the objective function in the overall range while the MILP
problem in the sub-range is being solved, it can be judged that there exists no optimal solution in
the sub-range, and the sub-range is also fathomed by the bounding operation.  
At the lower level, the MILP problems in sub-ranges are solved using a general commercial MILP
solver repeatedly.  In this paper, CPLEX Ver. 12.6.0.0 is used for this purpose through the modeling
system for mathematical programming GAMS Ver. 24.2.1 [10].  

4. Case study
4.1. System configurations
The performance of a gas turbine cogeneration system (system A) for district energy supply shown
in Fig. 1 is compared with that of a conventional energy supply system (system B) without cogen-
eration.  System A is composed of a gas turbine generator (GT), a waste heat recovery boiler (BW),
a gas-fired auxiliary boiler (BG), an electric compression refrigerator (RE), a steam absorption
refrigerator (RS), a device for receiving electricity (EP), and a pump for supplying cold water (PC).
Electricity is supplied to users by operating the gas turbine generator and purchasing electricity
from an outside electric power company.  Electricity is also used to drive the electric compression
refrigerator, pump, and other auxiliary machinery in the system.  Exhaust heat generated from the
gas turbine is recovered in the form of steam by the waste heat recovery boiler, and is used for heat
supply.  An excess of exhaust heat is disposed of through an exhaust gas dumper.  A shortage of
steam is supplemented by the gas-fired auxiliary boiler.  Cold water for space cooling is supplied
by the electric compression and steam absorption refrigerators.  Steam is used for space heating and
hot water supply.  On the other hand, system B is composed of a gas-fired auxiliary boiler, an elec-
tric compression refrigerator, a steam absorption refrigerator, a device for receiving electricity, and
a pump for supplying cold water.  
A concrete formulation of the annual total cost as the performance criteria as well as the perform-
ance characteristics of equipment and energy balance / supply-demand relationships as the con-
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straints is omitted here. 

4.2. Evaluation conditions
A typical year is divided into three representative days, i.e., summer, winter, and mid-season, which
have 122, 121, and 122 days per year, respectively.  Furthermore, each day is divided into 24 peri-
ods each of which has 1 h, and the duration per year of each period is given correspondingly.
Averages of electricity, steam, and cold water demands for each period are estimated.  Electricity,
steam, and cold water demands for each period are assumed to vary within ±a times of their aver-
ages, and correspondingly their upper and lower limits are given.  As an example, Fig. 2 shows the
averages of electricity, steam, and cold water demands on the representative day in summer.  Table
1 shows equipment capacities and utility maximum demands given as design specifications.  These
values are determined in the case of a = 0.2 using the robust optimal design method based on the
minimax regret criterion [4].  Other input data are given in Table 2.  All values for performance
characteristic values of equipment as well as unit costs of equipment and utilities are set based on
their real data.  In addition, all values for costs are stated in yen, which is equivalent to about
8.5×10–3 dollars and 7.4×10–3 euro on the recent exchange rate.  The capital recovery factor is set by
assuming that the life of equipment and the interest rate are 15 y and 0.1, respectively.  

4.3. Results and discussion
The minimum and maximum of the relative difference in the annual total cost between the cogener-
ation system (system A) and conventional energy supply system (system B) are evaluated by the
proposed method.  Figure 3 shows the relationship between the uncertainty in energy demands a,
and the minimum and maximum of the relative difference in the annual total cost.  In addition, the
relative differences in the annual total cost in case that average, maximum, and minimum energy
demands are selected at all the periods are also included in Fig. 3.  With an increase in a, the mini-
mum of the relative difference decreases, while the maximum increases, and consequently their
interval increases.  In addition, the decreasing rate in the minimum of the relative difference
increases slightly, while the increasing rate in the maximum of the relative difference decreases
slightly.  As a result, the averaged relative difference decreases slightly.  This is because the cogen-
eration system becomes disadvantageous for unbalanced electricity and heat demands with an
increase in a.  The relative difference in case that the minimum energy demands are selected is
smaller than that in case that the average ones are selected, and is much larger than the minimum of
the relative difference.  On the other hand, the relative difference in case that the maximum energy
demands are selected is slightly larger than that in case that the average ones are selected, and is
much smaller than the maximum of the relative difference.  These results show that it is difficult to
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determine the interval of the relative difference by a conventional sensitivity analysis where energy
demands are changed simultaneously and similarly at all the periods.  
As examples, Figs. 4 and 5 show the energy demands in summer which give the minimum and
maximum, respectively, of the relative difference in the annual total cost in the case of a = 0.2.  In
these figures, dot-dash lines show the average energy demands, and solid lines and marks show the
energy demands which give the minimum and maximum of the relative difference.  In Fig. 4, the
electricity demands at the upper limits are selected, while the steam and cold water demands at the
lower limits are selected, during the daytime.  This is because these electricity and heat demands
are unbalanced, and are disadvantageous to the cogeneration system, which makes the relative dif-
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Table 1.  Equipment capacities and utility 
maximum demands

 
Equipment / utility System A System B 

Gas turbine generator MW 9.79 — 
Waste heat recovery boiler MW 15.86 — 
Gas-fired auxiliary boiler MW 15.61 26.12 
Electric compression refrigerator MW 1.30 1.39 
Steam absorption refrigerator MW 24.19 24.10 
Electricity MW 12.62 22.02 
Natural gas m3/h 3.51 2.51 
 

 
Performance characteristic values of equipment 

Gas turbine Electricity 
generator  Exhaust heat 

3.23 kW/(m3/h) 
6.71 kW/(m3/h) 

Waste heat recovery boiler 0.78 kW/kW 
Gas-fired auxiliary boiler 10.40 kW/(m3/h) 
Electric compression refrigerator 5.04 kW/kW 
Steam absorption refrigerator 1.25 kW/kW 

Electricity consumptions for auxiliary machinery 
Gas turbine generator 0.121 kW/(m3/h) 
Waste heat recovery boiler 0.005 kW/kW 
Gas-fired auxiliary boiler 0.051 kW/(m3/h) 
Electric compression refrigerator 0.215 kW/kW 
Steam absorption refrigerator 0.079 kW/kW 
Pump  0.025 kW/kW 

Capital unit costs of equipment 
Gas turbine generator 230.0 103 yen/kW 
Waste heat recovery boiler 9.6 103 yen/kW 
Gas-fired auxiliary boiler 6.9 103 yen/kW 
Electric compression refrigerator 46.7 103 yen/kW 
Steam absorption refrigerator 43.7 103 yen/kW 
Receiving device 56.0 103 yen/kW 

Unit costs for demand charge of utilities 
Electricity 1.74 103 yen/(kW month)  
Natural gas 2.37 103 yen/(m3/h month) 

Unit costs for energy charge of utilities 
Electricity 11.0 yen/kWh 
Natural gas 31.0 yen/m3 

Parameters for annual total cost 
Capital recovery factor 0.132 
Interest rate 0.10 
Ratio of salvage value to capital 
cost 0.0 

 

Table 2.  Other input data
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ference minimum.  In Fig. 5, on the other hand, the electricity demands at the lower limits are
selected, while the steam demands at the upper limits are selected, and the cold water demands are
almost proportional to the electricity supplies by the cogeneration unit as shown below, during the
daytime.  These energy demands are very advantageous to the cogeneration system, because the
heat to power ratio of energy demands almost coincides with the heat to power ratio of energy sup-
plies by the cogeneration unit.  
Figures 6 and 7 show the optimal operational strategies of the cogeneration system corresponding
to the energy demands in summer which give the minimum and maximum, respectively, of the rela-
tive difference in the annual total cost in the case of a = 0.2.  Figures (a) to (c) show the load allo-
cations for electricity, steam, and cold water supplies, respectively.  Although the cogeneration sys-
tem is operated at the rated load state during the daytime in both Figs. 6 (a) and 7 (a), the amount of
purchased electricity in Fig. 6 (a) is much larger than that in Fig. 7 (a), because the electricity
demands at the upper and lower limits are selected in Figs. 4 and 5, respectively.  Thus, the amount
of exhaust heat which is available by operating the gas turbine generator is the same in both Figs. 6
(b) and 7 (b).  However, since the heat demands at the lower limits are selected in Fig. 4, a large
amount of exhaust heat must be disposed of in Fig. 6 (b).  On the other hand, since the heat
demands are almost proportional to the electricity supplies by the cogeneration unit, exhaust heat is
utilized more effectively in Fig. 7 (b).  

5. Conclusions
A method of evaluating the relative performance for two energy supply systems under uncertain
energy demands has been proposed based on a linear model.  The minimum and maximum, and
consequently their interval of a relative performance criterion for two energy supply systems have
been evaluated for all the possible energy demands.  An optimization problem included in this eval-
uation has been formulated as a bilevel programming one, and it has been transformed into an
MILP one.  Then, a hierarchical optimization method has been proposed to solve the problem effi-
ciently.  Finally, a case study has been conducted, and the relative difference or reduction rate in the
annual total cost of a cogeneration system in comparison with a conventional energy supply system
has been evaluated under uncertain energy demands.  Through the case study, the following main
results have been obtained:
• The minimum of the relative difference is much smaller than the relative difference in case that
the minimum energy demands are selected at all the periods.  On the other hand, the maximum
of the relative difference is much larger than the relative difference in case that the maximum
energy demands are selected at all the periods.  

• When the relative difference has its minimum, the electricity demands at the upper limits are
selected, while the heat demands at the lower limits are selected during the daytime.  On the
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other hand, when the relative difference has its maximum, the electricity demands at the lower
limits are selected, while the heat demands are almost proportional to the electricity supplies by
the cogeneration unit during the daytime.

• With an increase in the uncertainty in energy demands, the minimum of the relative difference
decreases, while the maximum increases, and consequently their interval increases.  In addi-
tion, the decreasing rate in the minimum of the relative difference increases slightly, while the
increasing rate in the maximum of the relative difference decreases slightly.  As a result, the
averaged relative difference decreases slightly.  

• These features on the relative difference depend significantly on the relationship between the
heat to power ratio of uncertain energy demands and that of energy supplies by the cogenera-
tion unit. 

Fig. 6.  Optimal operational strategy for energy
demands in summer for minimum of 
relative difference in annual total cost
(a = 0.2)

Fig. 7.  Optimal operational strategy for energy
demands in summer for maximum of 
relative difference in annual total cost
(a = 0.2)
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• It is difficult to obtain these results by a conventional sensitivity analysis where energy
demands are changed simultaneously and similarly at all the periods.  The results show the
validity and effectiveness of the proposed method.

Appendix
A detailed procedure for reformulating the bilevel programming problem of Eq. (7) to the MILP
problem of Eq. (8) is shown here.  
The numerator and denominator in Eq. (7) are expressed by the following equations:

(A1)

and

(A2)

respectively, where AA1, AA2, BA1, BA2, AB1, AB2, BB1, and BB2 are coefficient matrices, cA, dA,
cB, and dB are coefficient vectors, bA and bB are constant term vectors, and T denotes a transposi-
tion of a vector or matrix.  The uncertain energy demands are assumed to be constrained by the fol-
lowing intervals:

(A3)

where and are upper and lower limits for y.  Here, the Karush-Kuhn-Tucker conditions are
applied to the minimization operation with respect to zA in the numerator in Eq. (7), or Eq. (A1),
which results in

(A4)

where mA1 and mA2 are Lagrange multiplier vectors corresponding to the equality constraint vectors
in the second and third lines, respectively, and lA1 and lA2 are Lagrange multiplier vectors corre-
sponding to the inequality constraint vectors in the fourth and fifth lines, respectively, in Eq. (A1).
The last equality constraint shows the complementarity one which includes the inner product of the

0
0
0

sub.� to� � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � � � ( ) � ( ) 0

A A
T

A A
T

A

A1
T� �

A1 A2
T� �

A2 A1 A1 A2 A2 A

A1 A

A2 A A

A1 A A

A2 A

A1

A2

A1
T

A1 A A A2
T

A2 A

�

�

�

�

µ µ λ λ

λ
λ
λ λ

= +
+ + − = −
=
=
≤
≥
≥
≥

− − =











f c x d z
A A B B d
A z y
A z b
B z x
B z

B z x B z

≤ ≤y y y

0

� �
sub.� to� �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � � �

B B
T

B B
T

B

B1 B

B2 B B

B1 B B

B2 B

�

�

�

= +
=
=
≤
≥











f c x d z
A z y
A z b
B z x
B z

0

min � � � � �

sub.� to� � � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � � �

A A
T

A A
T

A

A1 A

A2 A A

A1 A A

A2 A

A

�

�

�

= +

=
=
≤
≥











f c x d z

A z y
A z b
B z x
B z

z

y y



inequality constraint vectors and the corresponding Lagrange multiplier vectors.  Although this
equality constraint is quadratic, it can be converted to the following linear inequality constraints by
introducing binary variable vectors dA1 and dA2 [9]: 

(A5)

where and are diagonal matrices with lower bounds for the corresponding inequality con-
straint vectors as all the diagonal components, and are diagonal matrices with upper
bounds for the corresponding Lagrange multiplier vectors as all the diagonal components, and 1 is a
vector with 1 as all the components.  Thus, the numerator in Eq. (7), or Eq. (A1) results in a mixed-
integer linear form.
The fractional programming method is applied to reformulating the denominator in Eq. (7) [8].
The inverse of the denominator in Eq. (7), or the annual total cost of system B in Eq. (A2), is
replaced by a continuous variable q as follows:  

(A6)

This replacement generates quadratic terms as the products of zA, zB, and y multiplied by q in Eqs.
(A2) to (A5).  However, these quadratic terms are replaced with continuous variable vectors ,
, and as follows:

(A7)

As a result, the ratio of Eq. (A1) to Eq. (A2) and Eq. (A3) are expressed by the following final
form:

(A8)
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where and are diagonal matrices for lower bounds for the corresponding inequality con-
straint vectors as all the diagonal components, and are calculated as the products of and ,
respectively, multiplied by the upper limit of Eq. (10) for the continuous variable q as follows: 

(A9)

Therefore, Eq. (7) results in the mixed-integer linear form of Eq. (8).
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