
PROCEEDINGS OF ECOS 2015 - THE 28TH INTERNATIONAL CONFERENCE ON 

EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS 

JUNE 30-JULY 3, 2015, PAU, FRANCE 

 

Lattice Boltzmann simulations to assess heating 
and cooling strategies of phase-change materials 

based on second-law analysis 

Alissar Yehyaa, Hassane Najib, and Laurent Zalewskic  

Civil Engineering & Geo-Environment Laboratory (LGCgE- EA 4515), Lille University, 

Northern France, 59000 Lille & Artois University, Faculty of Applied Sciences, LGCgE-EA 

4515, Technoparc Futura, F-62400 Béthune, France. 
a alissar.yehya@gmail.com 

b hassane.naji@univ-artois.fr 
c laurent.zalewski@univ-artois.fr 

Abstract: 

Phase change materials (PCMs), as storage means of latent heat, have recently become widely invested as 
alternative materials able to reduce energy consumption in buildings. However, for a proper integration in 
buildings thermal systems, the industry needs to optimize their performance. One of the key parameters in 
the assessment of these materials is the characterization of heating and cooling cycles. To achieve this, we 
propose, in this work, an optimization method based on the analysis of the second law of thermodynamics, 
namely, we intend to minimize the entransy dissipation. The simulations are performed using a thermal 
lattice Boltzmann model (TLBM), which is a mesoscopic method suitable for multi-phase problems in fluid 
and heat transfer. Moreover, the optimization is attained for the cases of pure conduction and conduction 
plus convection regimes. Theoretical solutions of the optimization problem are derived and then compared to 
the numerical results. Consequently, the achieved compatibility between analytical and numerical results 
proves the adequacy of the procedure. For the case of pure conduction, the optimal heating is via a 
hyperbolic function of exponent (n = 0.33). On the other hand, for the mixed conduction plus convection 
regime, the optimal path is via a hyperbolic function of (n = 0.5). In the light of the obtained results, we can 
propose an optimal thermal path for the external fluid temperature surrounding (PCMs) within a latent heat 
storage system. 
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1. Introduction 

Phase change materials (PCMs), as storage means of latent heat, have recently become widely 

invested as alternative materials able to reduce energy consumption in buildings. The number of 

studies concerning the integration of PCMs in buildings to improve their energy efficiency has been 

increasing during the last decade [1-6]. This shows the keen interest of researchers towards 

developing latent heat thermal energy systems (LHTES) to decrease the overall energy demand in 

buildings. However, for a proper integration, there is a vital need to optimize the performance of 

(PCMs). One of the key parameters in the assessment of these materials is the characterization of 

heating and cooling loads and cycles. The temperature response of  (PCMs) depends upon the 

nature of the thermal loads applied to them. These solicitations are usually due to the modification 

of the external environment. Thus, it is reasonable to raise the question on how would the change in 

the external temperature affect the behavior of (PCMs). The examination of such an effect is 

important, however, this should be provoked by an optimization of the up-mentioned load. The 

analysis of the second law of thermodynamics is adequate to address issues related to storage (or 



release) time duration and the temperature of the surroundings [5]. Hence, this work proposes the 

optimization of heating and cooling strategies based on the second law of thermodynamics. To do 

so, we choose the minimization of entransy dissipation as an objective. 

Since the 70s, the analysis of the second law of thermodynamics has started entering into the design 

of thermal and chemical processes. These processes are usually considered in terms of either exergy 

(available energy) or irreversibility (entropy generation). Nevertheless, in this work, we will use the 

entransy concept to optimize the performance of (PCMs). This concept was brought by Guo et al. 

[7], where the entransy dissipation extremum approach was presented as an optimization criterion 

for heat transfer processes [8].  Recently, Xia et al. [9] extended the entransy theory to the 

optimization of solid-liquid phase-change (PC) processes taking the entransy dissipation 

minimization as the optimization objective. This choice is mostly suitable since phase-change 

processes are independent of the heat-work conversion [10]. 

The major aim of this work is to analytically derive the optimal heating and cooling strategies and 

compare them with the numerical simulation results. The used procedure is inspired from the work 

of [9] for one-dimensional conduction (PC) problem. However, we extend the method to handle 2D 

convective (PC), as an enhancement. The numerical simulations are performed using a single 

relaxation time lattice Boltzmann model (SRT-LBM) with the BGK-approximation [11,12]. This 

approach is a discrete-particles-based method that numerically solves the Boltzmann equation 

unlike the conventional methods that are based on the Navier-Stokes (NS) equations.  

The paper is organized as follows: in section 2 we present the concept of the problem and 

methodology of handling it. Section 3 is dedicated for the minimization of entransy dissipation for 

pure conduction, while in section 4; we extend the procedure for convective regime. In section 5, 

we present how to can benefit from the optimal heating/cooling strategies in practical PCM 

applications. We then draw some conclusions in the last section. 

2. Concept and methodology 

Due to the presence of irreversibility, all transport processes contain two different types of physical 

quantities, the conserved ones and the non-conserved ones. The loss or dissipation in the non-

conserved quantities can then be used as a measurement of the irreversibility in the transport 

process [13]. Based on this, Guo et al. [7,14] introduced the concept of entransy and defined it as 

the heat transfer ability of an object. This is equivalent to the heat transport potential capacity in 

analogy with electrical and heat conductions [14]. Entransy possesses both the nature of “energy” 

and the transfer ability. Subsequently, if an object is put in contact with an infinite number of heat 

sinks that have infinitesimally lower temperatures, the total quantity of “potential energy” of heat 

that can be output is the entransy and derived as [7,14], 
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where cv is the constant volume specific heat capacity, T is the temperature, m is the mass, U is the 

internal energy of an object and G is the entransy. Dividing the entransy by the volume gives the 

entransy density G’ [7,14,15],  
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where ρ is the density. 



Similarly to the electric charge, the fluid mass is also non-dissipative and conserved during fluid 

flow, while the mechanical energy is dissipated due to fluid friction. The dissipation of mechanical 

energy is a measure of the fluid friction induced-irreversibility of the fluid flow that is not involved 

in a thermodynamic cycle [15]. Consequently, the entransy dissipation caused by heat conduction 

and convection, can be defined as a measure of irreversibility during these processes.  

To benefit from this concept, which is based on the second law of thermodynamics, we intend 

employ it for optimizing the time paths of the external temperature in phase-change materials 

(PCMs). As mentioned previously, one of the key parameters in the assessment of these materials is 

the characterization of heating and cooling loads and cycles. The temperature response of  (PCMs) 

depends upon the nature of the thermal loads applied to them. These solicitations are usually due to 

the modification of the external environment. Thus, the type and rate of change in the external 

temperature affects the behavior of (PCMs). To investigate this effect, we analyze the entransy 

dissipation due to different external temperature loading. We then propose a method to optimize the 

strategy of loading through minimization of the entransy dissipation. This will be done analytically 

and then tested numerically for melting and solidification with conduction and convection. So, 

briefly the methodology is the following: 

▪ Analytical derivation of the entransy dissipation; 

▪ Optimization of the heating/cooling strategy by minimizing the entransy dissipation; 

▪ Verify that the analytical and numerical results are equivalent. 

3. Thermal lattice Boltzmann model (TLBM) 

The TLBM [16,17] consists of simulating the statistical behaviour of a set of particles on a lattice 

with finite velocities. It stems from the discrete Boltzmann equation and allows providing 

macroscopic fluid properties such as density, velocity, pressure, etc. through weighted averages, or 

moments, of the particle distribution for all discrete lattice velocities. The SRT-LBM (also called 

the Bhatnagar-Gross-Krook (BGK) model [11]) for incompressible thermal flows builds on two 

distribution functions (DFs), fi and gi, and their corresponding evolution equations [18,19]. 

However, its extension to flows with heat transfer is not straightforward due to numerical 

instabilities engendered. In the thermal lattice Boltzmann method (TLBM), a separate DF is used to 

solve for the temperature. In other words, two sets of distribution functions are defined, one for the 

velocity field and the other for the temperature. Thereby, such an approach can easily handle 

arbitrary Prandtl numbers. This double distribution function (DDF) scheme has been successfully 

used to solve thermal problems in two dimensions. Nevertheless, it only applies when the fluid 

density depends weakly on the temperature. This is the approach we have adopted here to conduct 

this work, with the below defined evolution equations [16-19], 
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where ei is the microscopic particle velocity in the i-direction, τf and τh are the dimensionless 

relaxation times, and fi
eq and gi

eq are local equilibrium distributions functions that can be computed 

from: 
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are, respectively, the weight coefficient and the velocity vector of the D2Q9 model; with, u and v 

representing velocities in the x- and y-directions, respectively. Note that the relaxation times τf and 

τh can be determined via ν = cs
2Δt(τf – 0.5) and α = cs

2Δt(τh – 0.5), cs being the lattice sound speed. 

Likewise, additional terms Fb = −βgr(T−T0)/(Th−Tc) and Sh = ±Ste-1(ε/t) are Boussinesq force 
which simulates natural convection and the source (or sink) term that handles the phase-change. 

The liquid fraction ε is computed from [20] as, 
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where h is the local enthalpy and Tm is the fusion temperature. It is useful to address that in the 

current model, the solid and liquid phases are defined according to the liquid fraction value. 

Therefore, the solid state is assigned when the value of ε is less than 0.5 (by convention). In this 

case, the velocity field is fully bounce-backed and the macroscopic velocity of the solid phase is set 

to zero.  

Note that, to implement BCs in the current method, we are led to convert them, at mesoscopic level, 

in terms of distribution functions fi and gi. For the velocity field, the non-slip boundary conditions 

realised by the on-grid bounce-back (BB) on boundaries. On the other hand, to specify a constant 

temperature, we use the method proposed by Inamuro et al. [21]. As for the adiabatic BCs, the 

Neumann BCs are achieved using the BB boundary conditions for the distribution gi, as prescribed 

for fi. 

Finally, the basic thermo-hydrodynamic properties, such as density,  , momentum density, u , 

and temperature, T , are defined as moments of the DFs, if  and ig , as follows, 
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3. Conduction and phase-change 

3.1. Problem description  

For the investigation of entransy dissipation concept in 1D conduction problem with phase-change, 

we adopt the same configuration depicted in [9]. Figure 1 shows a one-dimensional slab of 



thickness l, which is perfectly insulated except where cooling or heating external temperature Ts(t) 

is applied. The slab is initially all liquid (for freezing) or all solid (for melting) at the fusion 

temperature Tm. As a constraint for optimization, the freezing or melting process is fixed to occur in 

a given time denoted by t0. Position along the slab is denoted by variable x, with and x = δ denoting 

the position of the phase boundary between liquid and solid during the freezing or melting process.  

The aim here is to reproduce the analytical derivation of the optimized external temperature Ts(t) 

time path, and test whether the numerical investigation will result in confounded results. And later 

extend the proposed procedure to handle the convective melting.  

 

Fig. 1.  1D conduction solid-liquid phase-change schema. 

3.2. Entransy dissipation calculation 

The entransy dissipation rate per unit area of the slab is obtained as [9], 
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where k is the conductivity and δ is the position of the phase front. Hence, the entransy dissipation 

over the entire process from t = 0 to t = t0 is, 
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The Stefan condition for the time evolution of the phase boundary is given by,  
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where L is the latent heat of fusion and δ’ is the rate of the phase boundary propagation. By 

applying the adequate quasi-stationary approximation in the vicinity of small Stefan numbers 

[22,23], and as proved in [9], the optimisation of the time-dependent external temperature is the 

same as optimizing δ(t). The solution of the slab temperature is then given by, 

 

 
T( x,t ) = T

m
± ( rL / k )d '( x-d ). (13) 

By combining (10), (11), and (13), the entransy dissipation for the phase-change process is obtained 

as follows, 
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3.3. Optimization procedure 

The optimization problem is based on the calculation of the expression of the external temperature 

Ts(t) corresponding to the minimum entransy dissipation of the phase-change process with a 

constraint of a fixed time t0. To do so we follow the procedure proposed in [9], where the modified 

Lagrange is given by, 
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The Euler-Lagrange equation to determine the optimal solution is then, 
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This yields to the below condition: 

 d '2+ 2dd '' = 0, (17) 

where δ’’= d2δ/dt2. By applying the known boundary conditions presented in Fig. 1, we obtain, 
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which gives the optimal dimensionless front phase position θ = δ/l versus the dimensionless time ζ 

= t/t0 corresponding to the optimal heat exchange strategy that results in minimum entransy 

dissipation. Substituting (18) with its derivative in (13) and setting x = 0, we obtain: 
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Therefore, to obtain an optimum response of this configuration based on the criterion of entransy 

dissipation the external temperature Ts(t) should increase or decrease as per (19). So practically, as 

an application on (PCMs), how can this be employed? This is discussed thoroughly in section 5. 

 

3.4. Numerical results 

The numerical simulation of the conduction phase-change problem proposed in Fig. 1 implied the 

same results expected by the theoretical equations. The optimum thermal loading coincides with 

(19).  In the light of these results, the numerical model is verified and the straightforward 

implementation of the lattice Boltzmann model proves the adequacy of this numerical method to 

handle such problems. The total entransy dissipation is plotted in Fig. 2 versus the exponent n in the 

general form (20), which reads as, 



  

T
s
( t ) = T

m
± B

t

t
0

æ

è
ç

ö

ø
÷

n

. (20) 

where B = 2ρLl2/3kt0 in lattice units, and n is an exponent varied from 0 till 0.5 to explore to what 

exponent the minimum entransy dissipation corresponds numerically. The simulations are 

performed on a phase-change material (PCM) namely Octadecane, whose Prandtl number is Pr = 

50, and for a Stefan number Ste(t) = 0.0084(Ts(t) – Tm). As deduced from Fig. 2, the minimum 

entransy dissipation, calculated by (14), is obtained for (20) at n = 0.33 = 1/3, and this conforms to 

the theoretical solution in (19). 

 

Fig. 2.  Pure conduction: Entransy dissipation of phase-change versus the exponent n of (20). 

4. Convection dominated phase-change 

4.1. Problem description 

The natural convection problem with phase-change studied by many researchers [22-30] is a 

complicated problem with no unified theoretical treatment [25], due to the strong coupling between 

the natural circulation of the liquid phase and the melting rate of the solid. It is this coupling that 

determines the instantaneous shape of the liquid-solid interface, which becomes one of the key 

unknowns in each problem [26]. Equation (14) is derived by considering the Neumann-problem 

with conduction only. Thus, we will try to derive, in this work, the entransy dissipation of phase-

change with convection being the dominant heat transfer mode. For this, a 2D enclosure is 

considered as shown in Fig. 3, with Ts(t) applied on the left side and having the fluid initially in 

solid state and at Tm. The other sides are considered adiabatic. At the beginning the conduction 

mode will be dominant, nevertheless, it is worth noting that an infinitesimally small convection 

heart transfer effect is present even when time tends to zero [26]. From here, we assume that 

considering the effect of convection for minimizing the entransy dissipation is crucial. 

4.2. Entransy dissipation in convection dominated phase-change 

 

The main difference in between conduction and convection melting is the shape and mode of 

propagation of the melting front. Under the effect of convection the upper part of the front recedes 

faster due to clockwise rotating velocity of the fluid. From [26], the vertical velocity scale of this 

very slender counter flow, v, is determined by the balance between the vertical buoyancy effect 

gβ(Ts - Tf ), where Tf is the temperature at the melting front, and the vertical friction effect of 

thickness equal to that of the formed fluid, δ. Thus, the resulting velocity scale is at a time t, 
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Fig. 3.  2D convection dominated solid-liquid phase-change schema. 

The convective heat transfer rate carried upward by this counter flow is [26], 
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in which (ρvδ) represents the vertical mass flow rate of one branch. The convective heat current Qc 

originates from the bottom end of the hot wall, flows vertically through the fluid gap and is then 

absorbed by the top end of the liquid-solid interface. The total heat transfer rate in the horizontal 

direction is the sum of the conduction and convection contributions [26], 
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Dividing the enclosure in Fig. 3 to finite number of thin slabs, the position of the velocity of the 

melting front of slab i is now determined by [26], 
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Then we can substitute (21) to get, 
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We will divide the rate of phase propagation as that caused by conduction effect and that caused by 

convection as, δ’ = δ’cond + δ’conv . 
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Since we intend to minimize the entransy for a fixed period of time, the entransy caused by 

conduction should be minimized. This is because that caused by convection is always increasing as 

time passes, since it depends on Ra(t). Hence, the scaling of (14) insures the following equation for 

the entransy dissipation of phase change in the presence of convection: 
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The applied temperature of a slab i at any time t, is given as functions f1 and f2 , 
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So, if δ is of exponent n then Ts(t) is of exponent 2n.  

4.3. Optimization procedure 

Similarly to the previous case, the optimization problem is done by minimizing (27) using Euler-

Lagrange equation. This results in, 

 
d '3+ 2dd 'd ''- 2a d 3d 'd ''+ 3d 2d ' 2( )+ 5bd 4d ' = 0.  (29) 

Let δ = A(t/t0)n and substitute for δ, δ’, and δ” in (29). The parameters a and b are constants to be 

derived from the initial conditions and are function of material properties and temperature gradient. 

Their calculation in this stage is not necessary. It should be noted here that in (27) δ’conv is replaced 

by a function of δ and b, according to (25) and (26). The resultant optimum solution is for n = 1/4. 

This means that the external temperature reads as, 
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with B being function of material properties, B = f(k,L,Pr,cp,t1), and t1 here denotes the end of 

convection plus conduction regime. It is important to mention that here the heat transfer regime is 

considered with conduction and convection modes. When we have fully convection regime, the 

above optimisation is no more valid and the entransy dissipation always increases with time until 

reaching the steady state. Unlike, our heating strategy optimisation during transient states, which is 

independent of the parameters (since we consider only conduction), the optimisation at steady state 

can be done with respect to shape or material parameters and is unique for every material. 

Moreover, the external temperature is the same for all slabs i. Its optimisation is based on the 

minimization of the total entransy dissipation, which leads to a profile with exponent n independent 

of slab’s position i. However, the value of parameter B may differ from one slab to another 

depending on the local Ra. 

4.4. Numerical results for convective melting 

To test if the numerical results match the theoretical hypothesis, the problem of Fig. 3 is simulated 

via the thermal Lattice Boltzmann for the case of Octadecane with Pr = 50, Stefan number Ste(t) = 

0.0084(Ts(t) – Tm), Ra(t1) = 104, and H = Le. The results are presented in Fig. 4. It is important to 



assure that we do not pass to the fully convective regime the condition brought by [26] is respected, 

which is, Ra(t)1/4 < H/Le = 1. Hence, we simulate for n = 0 till 1, however we estimate numerically 

the interval of n where we insure that starting from, at least 0.2t1 to have a significant minimum, the 

convection is dominant and thus we insure conduction plus convective mode. This interval is 0 < n 

< 0.7, hereafter the optimal numerical solution should be in this interval. To explain more, for n > 

0.7, the convection mode dominates in a fast period of time and this will affect the previously 

proposed assumptions, i.e. conduction plus convection regime. To recall, when the dominant mode 

is convection the entransy dissipation increases with time and no minimum will exist. As illustrated 

in Fig. 4, the numerical results match the theoretical scaling with the optimum heating strategy 

being of exponent n = 0.5 = 1/2. 

 

Fig. 2. Conduction & convection: Entransy dissipation of phase-change versus the exponent n. 

5. Practical employment of the optimum heating/cooling 
strategy in (PCMs) applications 

The first type of integration is in a latent heat storage system, where there exists a reservoir 

containing a fluid surrounding the PCM. Here the external reservoir temperature is controllable and 

the benefit of the optimum heating/cooling strategies is straightforward. However, in the passive 

(PCMs) application, the thermal loading is due to solar energy. The time and external temperature 

are directly related to the climatic data. In this case, we can test how far the climatic thermal load is 

from the optimal strategy. However, for this there can be another optimisation procedure by fixing 

the exponent n and assessing t0, which is the time necessary for fusion, by selecting adequate 

material properties. We recall that if the (PCM) mass is overestimated, the time needed for the heat 

to penetrate it could become larger than the sunshine period, and the melting process cannot be 

completed. Thereby, insufficient thermal storage is faced when (PCM) does not totally solidify or 

totally melt within the heating/cooling period.  

Conclusion 
In this work, we calculated analytically and numerically the optimal heating/cooling paths for 

(PCM) for the pure conduction and conduction plus convection cases. The numerical simulations 

were done via a thermal lattice Boltzmann model and using single relaxation time (SRT) collision 

operator. The derived theoretical and numerical optimal strategies are confounded, which proves the 

adequacy of the optimisation procedure. For the case of pure conduction, the optimal heating is via 

a hyperbolic function of exponent (n = 0.33). On the other hand, for the mixed conduction plus 

convection regime, the optimal path is via a hyperbolic function of (n = 0.5). In the light of the 

obtained results, we can propose an optimisation for the external fluid temperature surrounding 

(PCM) within a latent heat storage system. 



Nomenclature 
Most of the symbols are defined directly when used, however, here is a list of most used symbols. 

cp  specific heat, J/(kg K) 

k  conductivity, W/(m K) 

H  height, m 

Le  length, m 

L  latent heat of fusion, J/kg 

t  time, s 

T  temperature, K 

Tm  melting temperature, K 

Ts   external temperature, K 

Greek symbols 

ρ density, kg/m3 

δ position of fusion front 

δ’ rate of propagation of fusion front 

Subscripts and superscripts 

cond conduction 

conv convection 
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