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Abstract: 

Demand-side electricity saving is an important factor in the reduction of the installed capacity of power-
supply facilities. In order to save electricity automatically while maintaining comfort levels, home energy 
management systems (HEMS) have attracted attention. These systems can control residential energy 
equipment cooperatively to reduce electricity consumption while considering benefits to consumers. 
Although many researchers have evaluated HEMS, no one has conducted a study which considers the 
control of various types of residential energy equipment in real time along with the uncertainties of energy 
demands. This paper proposes a single HEMS method which connects prediction, operational planning and 
control steps and enables the evaluation of operational planning methods of HEMS connected with many 
kinds of residential energy equipment currently in use in Japan while considering the uncertainties. The 
purpose of this study is to evaluate the economic potential of residential energy systems based on the 
proposed method with the uncertainties of energy demands and photovoltaic (PV) output under time-of-use 
prices. The results allowed us to establish a framework to quantitatively evaluate the operational planning 
methods of HEMS with the uncertainties of energy demands and PV output. In addition, the usability of the 
proposed method was confirmed by comparing the operational costs to those of a reference method. 

Keywords: 
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1. Introduction 
In the past, surplus power-supply facilities have been built as a backup for supplying electricity in 

peak hours. It is very expensive to operate and maintain these facilities. Therefore, electricity saving 

on the demand side is important in order to reduce the installed capacity of power-supply facilities 

[1]. It is not rational to attempt to save electricity without considering the comfort of consumers. In 

an effort to save electricity automatically while maintaining comfort levels, attention has turned to 

home energy management systems (HEMS). HEMS are expected to control residential energy 

equipment automatically and cooperatively while considering benefits to consumers. From the 

perspectives of energy saving and cost saving, operational planning is important to a system 

including buffer equipment because there are a lot of alternate operational strategies for the buffer 



  

equipment. In addition, if a residential system consists of various types of residential energy 

equipment, it is more beneficial to control the equipment cooperatively as parts of a total 

optimization than to control the equipment independently as a number of partial optimizations. An 

optimization calculation to determine optimal operational strategies for residential energy 

equipment can be formulated as a mixed integer linear programming (MILP) problem. For instance, 

Yokoyama et al. [2] evaluated cogeneration systems using a MILP method. Wakui et al. [3] 

suggested that taking advantage of the high electricity-generating efficiency of the solid oxide fuel 

cell (SOFC) is more suitable for saving energy using a MILP method. However, the real-time 

demands are unclear until the moment in reality. Therefore, determination of operational strategy 

based on real-time demands is not for actual use. One of the solutions of this problem is to 

determine an operational strategy based on predictions of residential demands and PV output which 

are predicted in advance.  

Surveys on energy management systems (EMS) or smart houses have been conducted by a number 

of researchers. Anvari-Moghaddam et al. [4] proposed a novel residential energy management 

system to improve energy consumption efficiency in regards to energy consumption costs and 

users’ comfort using a mixed integer nonlinear problem (MINLP). Missaoui et al. [5] analysed a 

Building Energy Management System (BEMS) which optimizes a compromise between user 

comfort and electricity costs with a detailed house model. Pedrasa et al. [6] studied the usability of a 

coordinated, distributed energy-resource operation in a manner optimized to benefit users compared 

to the usability when they are scheduled independently. In addition, surveys taking uncertainty into 

consideration have also been reported. Yoshida et al. [7] evaluated the primary energy consumption 

of a residential photovoltaic/fuel-cell energy system using scenario-based stochastic programming 

to consider the uncertainty of residential demands. Multiple model-based predictive control was 

adapted to thermal energy storage by Kim [8]. Akbari et al. [9] illustrated a hospital energy 

management system which focused on uncertainties in demand, costs, and prices. Ozoe et al. [10] 

presented a mathematical model of a smart house using two-stage stochastic mixed-integer 

programming with uncertainties in PV output, and in the electricity and heat demands. 

Tascikaraoglu et al. [11] studied an experimental smart house, while forecasting the power available 

from renewable energy sources. Kawashima et al. [12] proposed an apartment building energy 

management system in a group optimization based on model-predictive control using in-vehicle 

batteries. 

As for demand response (DR), which is another measure to realize peak shift or peak cut [1], Khan 

et al. [13] presented HEMS-enabled smart appliances to counter DR programs according to the 

comfort levels and priorities set by residents and also conducted some numerical simulations. Guo 

et al. [14] solved optimization problems for smart home scheduling with uncertainty of energy 

prices as a DR problem.  

However, all of these researchers evaluated with only limited equipment configurations. Their 

suggestions might not assure the thermal comfort of residents. They also might not control 

residential energy equipment in real time. In this study, the term of control means operation of 

residential energy equipment to meet energy balance in real time. This paper proposes a method 

which connects prediction, operational planning and control steps as a HEMS method and enables 

evaluation of operational planning methods of HEMS connected with many kinds of residential 

energy equipment currently available in Japan while considering uncertainties. The purpose of this 

study is economic evaluation including the uncertainties of residential energy demands such as 

electricity, hot water (HW) and space heating/cooling, solar radiation including PV output, the 

temperature and humidity under time-of-use (TOU) prices as a DR problem assuring the thermal 

comfort of residents. 

2. Methodology 
An overview of the proposed prediction-operational planning-control method is shown in Fig. 1, 

and a data-flow diagram of both the proposed and reference methods is given in Fig. 2. As shown in 



  

Fig. 1, first of all, in the prediction step, the next 24-hour insolation, bound by comfortable room 

temperature, the PV output and the residential energy demands are predicted based on external data 

[17-19]. Past data is used in order to predict the expected demand. Secondly, in the operational 

planning step and based on the prediction data, operational strategies for the residential energy 

equipment over the next 24 hours are optimally determined so as to minimize the daily operational 

costs. Finally, in the control step, following the strategies determined in the operational planning 

step, the residential energy equipment is controlled in order to meet the real-time energy demands. 

Then, the daily operational costs are calculated. As shown in Fig. 2, the prediction step is carried 

out between 12 a.m. and 1 a.m. Operational planning is carried out between 1 a.m. and 3 a.m. From 

3 a.m. to 3 a.m. the following day, the control step is carried out. Then, in order to evaluate our 

method, the daily operational costs of the two methods are compared. The proposed method is 

assumed to consider HEMS function, so it is assumed that HEMS predicts the future demands and 

PV output and determines the operational strategies automatically, cooperatively, and optimally in 

this method. On the other hand, the reference method is not assumed to consider HEMS function, so 

there is no prediction step and operational strategies are assumed as individual and non-optimal in 

this method. In the operational planning and control steps, the predicted mean vote (PMV) [20], 

which is an index of the thermal comfort of people, is considered to meet the thermal comfort 

requirements of the residents. 

 

Fig. 1.  Overview of the proposed prediction-operational planning-control method. 

 

Fig. 2.  Data flow of the proposed and reference methods. 

2.1. Residential energy system 

The residential energy system has options to include photovoltaics (PV), a battery (BT), a polymer-

electrolyte-membrane fuel-cell cogeneration system (PEFC-CGS), a heat-pump water heater (HP), a 

condensing-gas boiler (CGB), air conditioning appliances (AC), thermal-insulation automatic blinds 

(TIB), sunlight-shielding automatic blinds (SSAB), and automatic windows (AW). A schematic 

diagram of the residential energy equipment and the specifications of each type of energy 

equipment used in this study are shown in Fig. 3. In this study, we ran economic evaluations based 

600

500

400

300

200

100

0

B
T

 I
N

/O
U

T
W

h
/1

5
m

in

Time

3 8 13 18 23

External Prediction Step

Com fortab le tem perature

Insolation

W eather forecast Insolation

PV pow er

Energy

Operational

Decision variab les

  - Buffer level

  - On/Off status

  - Energy flow

  - Mass flow

Ob jectives

    -  Econom y

Control Step

(Control param eters
and statuses)

1000

800

600

400

200

0

Time

3 8 13 18 23

30

28

26

24

22

20

Time

3 8 13 18 23

Consider operational strategy

Control in sampling  time
to meet the energy demand

Operational strategy

Battery PEFC
Power demand

Hot w ater dem and

ON/OFF

Planning  Step

dem and

data

Energy dem and

bound
Solar altitude

Noon tim e

Past data

Min

J (t)

Min

J(t)

Min

J(t)

Min

J(t)

Min

J(t)

t =1 t=2 t=3 t=T-1 t=T

・ ・ ・

Tim e

Actual
demands

Actual
demands

Actual
demands

Actual
demands

Actual
demands

daily operational costs
Calculate

PV output

Data base

J : Operational costs

Prediction targets

Prediction step

Operational planning step

Prediction

Input

Operational
planning

Input Output

Control

Output

Control step

the day before
Tim e  h

the day

Control

1 3 273

Observed load pattern

24

PEFC operational strategy

Power pred iction

Hot w ater p red iction

Battery operational strategy

ON or OFF

Charge or Discharge

Actual power dem and

Output

Power p red iction

Hot water p red iction
Input

Actual hot w ater dem and

Assume the operational strategy

the day before
Tim e  h

the day

Control

1 3 273 24

Operational planning step

W eather

forecast

Result

Control

OutputActual power dem and Input

Actual hot w ater dem and

Compare operational costs

Control step

Proposed method considers
HEMS function and prediction step

Referential method doesn’t

consider HEMS function

and prediction step

Operational
cost

Result

Operational
cost



  

on the energy demands of an actual detached house and 12 equipment configurations. In this paper, 

the boundary of a residential energy system is defined as one household. Buying electricity from the 

grid and using city gas costs operating money. On the other hand, surplus electricity from the PV 

system can be sold to grid, and residents gain depending on the amount of surplus electricity sold to 

the grid. The equipment supplies electricity, HW, and heating/cooling. Electricity is supplied by the 

PV equipment, BT, PEFC-CGS, and electricity from the grid. HW is supplied by the CGB, PEFC-

CGS, or HP, and both the PEFC-CGS and HP have hot-water tanks (HWT). Heating/cooling 

demands are satisfied by the AC equipment, TIB, SSAB and AW in order to fall inside the range of 

comfortable temperatures, which is set by the PMV. 

 

Fig. 3.  A schematic diagram of residential energy systems and specifications. 

In Fig. 3, the energy and mass flow rate is balanced at branch points for every sampling time, t. the 

constraints of this study are shown below. In this report, decision variables are given as lower-case 

alphabetical letters, excepting the time index, t, scenario number, s, efficiency, 𝜂, and objective 
value, J. Therefore, the decision variables consist of continuous energy and mass flow variables and 

0-1 integer variables which represent the ON/OFF state of the equipment. 
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Where �̇�
buy

 is the electricity purchased from the grid, �̇�
FC,sup

 and �̇�
PCU,sup

 are the electricity 

supplied from the PEFC-CGS and the power conditioning unit (PCU) respectively, �̇�Dem is the 

electricity demand, �̇�
FC,up

  �̇�HP, �̇�AC,in
, �̇�SSAB,in

, �̇�TIB,in
, �̇�AW,in

, �̇�HP,in
, �̇�HP,AUX,in

,  �̇�FC,AUX,in
, and 

�̇�H,in
 are the electricity consumed by the PEFC-CGS to start up, the HP, the AC, the SSAB, the TIB, 

the AW, the HP heating unit, the auxiliary (AUX) of the HP, the AUX of the PEFC-CGS and the 

electrical heater (H), respectively, �̇�PCU,in
 is the electricity input to the PCU, �̇�FC,out

 is the 

electricity output from the PEFC-CGS, �̇�HP,HWT,out
, �̇�FC,HWT,out

, �̇�CGB,out
, and �̇�H,out

 are the HW 

output from the HWT of the HP, the HWT of the PEFC-CGS, the CGB and the H respectively, 

�̇�Dem is the HW demand, �̇�FC,HWT,in
 is the HW input to the HWT of the PEFC-CGS, �̇�

buy
 is the 

gas purchased, and  �̇�CGB,in
 and �̇�FC,in

 are the gas consumption of the CGB and PEFC-CGS, 

respectively.  

The output of each piece of equipment, including the PEFC, HP, H, AC, PCU and CGB is 

calculated by multiplying the input by the efficiency of each piece. The equations are below. 



  

�̇�𝑡,𝑠
FC,out = 𝜂FC,E�̇�𝑡,𝑠

FC,in
   (7)        �̇�𝑡,𝑠

FC,out = 𝜂FC,HW�̇�𝑡,𝑠
FC,in

 (8) 

 �̇�𝑡,𝑠
HP,HWT,in = 𝜂HP,HW�̇�𝑡,𝑠

HP,in
   (9)       �̇�𝑡,𝑠

H,out = 𝜂H,HW�̇�𝑡,𝑠
H,in

 (10) 

�̇�𝑡,𝑠
AC,SHC,out = 𝜂AC,SHC�̇�𝑡,𝑠

AC,in
  (11) 

      �̇�𝑡,𝑠
PCU,sup

+ �̇�𝑡,𝑠
BT,in + �̇�𝑡,𝑠

PV,rev
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PV) 

(12) 

�̇�𝑡,𝑠
CGB,out = 𝜂CGB,HW�̇�𝑡,𝑠

CGB,in
  (13)   

Where 𝜂FC,E
, 𝜂FC,HW

,  𝜂HP,HW
, 𝜂H,HW

, 𝜂AC,SHC
, 𝜂INV, and 𝜂CGB,HW

 are the generation efficiency of 

the PEFC, the efficiency of the PEFC for heat recovery, the efficiency of the HP, the efficiency of 

the H, the efficiency of the AC for heating/cooling, the efficiency of the inverter of the PCU, and 

the efficiency of the CGB, respectively, �̇�HP,HWT,in
 is the HW input to the HWT of the HP, 

�̇�AC,SHC,out
 is the thermal supply from the AC, �̇�BT,in

 and �̇�BT,out
 are the charge and discharge 

electricity of the BT, respectively, �̇�PV,rev
 is the electricity from the PV sold to the grid and �̇�PV is 

the PV output. 

The storage energy level of the HWT and BT is calculated by the equations below. 

𝑞𝑡,𝑠
FC,HWT = (1 −  𝜂FC,HWT,loss𝛿𝑡)𝑞𝑡−1,𝑠
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FC,HWT,out      (14) 

𝑞𝑡,𝑠
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HP,HWT,out      (15) 

𝑒𝑡,𝑠
BT = (1 − 𝜂BT,loss𝛿𝑡)𝑒𝑡−1,𝑠

BT +  𝜂BT�̇�𝑡,𝑠
BT,in − 𝜂BT�̇�𝑡,𝑠
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Where 𝑞𝑡,𝑠
FC,HWT

, 𝑞𝑡,𝑠
HP,HWT

 and 𝑒𝑡,𝑠
BT are the storage energy levels of the HWT of the PEFC-CGS, the 

HWT of the HP, and the BT, respectively, 𝜂FC,HWT,loss
, 𝜂HP,HWT,loss

, 𝜂BT,loss
, and 𝜂BT are the loss 

factors of the HWT of the PEFC-CGS, the HWT of the HP, the BT, and the charge/discharge 

efficiency of the BT, respectively, and 𝛿𝑡 is the sampling time interval. 

2.2. Proposed method (Prediction-Operational Planning-Control) 

In this section, we explain the proposed prediction-operational planning-control method which 

considers HEMS function as shown in Fig. 2. Therefore, the operational strategies of the energy 

equipment are optimally determined based on prediction data. The term of control means the 

operation of the residential energy equipment to meet the real-time energy balance. 

2.2.1. Prediction step  

In the prediction step, databases of demand and climate conditions are constructed. We develop a 

prediction system which searches for similar patterns in the databases to input. A Just-in-Time (JIT) 

modelling method is used to develop the proposed prediction system, and the demand of the 

previous day and the weather forecast are input to the databases. The prediction systems developed 

by commonly used methods such as linear regression models cannot consider various uncertainties 

caused by unexpected human activities. Therefore, the operational strategies based on these 

predictions might not be robust. To make the operational strategies more robust, a prediction system 

which can output multiple prediction data is useful. Thus, we adopt a JIT modelling method based 

on the k-means method for prediction and our proposed prediction system can output several 

realistic scenarios considering various human activities. It is the same for insolation and PV output 

prediction in the sense that we can consider confidence intervals. However, the confidence intervals 

of insolation and PV output are not considered in this paper. 

The next 24-hour temperature and humidity are predicted by an external data service, namely the 

Japan Meteorological Business Support Center. The insolation for the next 24 hours, the PV output, 

and the residential energy demands are predicted based on past data using the proposed prediction 

system [17-19]. First, a database of input-output relationships is constructed using the JIT 

modelling method based on actual observed values of an actual detached house. Secondly, we select 

several data points which are similar to inputs from the database. Finally, we output data for several 



  

prediction targets which are estimated by the selected data points. In this prediction method, Metric 

Learning is applied to learn degrees of similarity of distances between input data and data in the 

database except for the data of the prediction day. We input the temperature and humidity forecast 

for the prediction day and the energy demands observed from the previous day into the database. 

2.2.2. Operational planning step  

Stochastic Programming (SP), which is based on scenarios, is applied to the optimal operational 

planning problem to make operational strategies robust by considering several predicted data 

scenarios for operational planning. Scenarios are the energy demands for the next 24 hours, the PV 

output, and the range of comfortable room temperatures time-series data, which are integrated over 

15 minute segments. In SP, formulation as a MILP is possible by considering future events as 

scenarios with event probabilities. A brief overview of SP is given in Fig. 4. 

As shown in Fig. 2, in the operational planning step, 24-hour operational strategies for an evaluation 

period from 3 a.m. to 3 a.m. the next day are determined between 1 a.m. and 3 a.m. An evaluation 

day is represented by the time index t = 1, …, T by dividing the evaluation period into T parts as 

sampling time. Thus, T represents the number of sampling time periods. We assume that T = 96; 

thus, the sampling time interval is 15 minutes. This is formulated as a large-scale MILP problem 

which consists of 14238 decision variables and 15524 constraints for one day of one energy system. 

As shown in Fig. 4, we minimize the expected value 𝐽S̅P of the daily operational costs 𝐽𝑠
SP of S 

scenarios. The objective function is shown in Equations (17) and (18). The inputs are the predicted 

temperature, humidity, the PV output data scenario, and scenarios for the electricity and HW 

demands which are represented by the number of scenario s = 1, …, S with event probabilities 𝑃𝑠 . 

Thus, S represents the total number of scenarios. In this study, the event probabilities 𝑃𝑠   are equal 

to each scenario and the sum of 𝑃𝑠  equals one. S is assumed to be five scenarios. Additionally, in 
order to determine the same operational strategies for each discretized time from many different 

scenarios, constraints of Equations (19) to (22) below are added. As for heating/cooling demands, 

the range of comfortable room temperatures which is decided by the PMV is satisfied by the AC, 

TIB, SSAB and AW. 
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PEFC = 𝑧𝑡,𝑠=2
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BT,in = ė𝑡,𝑠=2
BT,in = ⋯ = ė𝑡,𝑠=𝑆
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 ė𝑡,𝑠=1
BT,out = ė𝑡,𝑠=2

BT,out = ⋯ = ė𝑡,𝑠=𝑆
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Where 𝐶e , 𝐶
g

, 𝐶rev, and 𝑧PEFC are the time-of-use prices of the electricity, the metered cost of the 

gas, the feed-in tariff for the PV reversed electricity, and the PEFC ON/OFF integer state, 

respectively. 

 

Fig. 4. A brief overview of the SP method. 



  

2.2.3. Control step 

An image of the control step is shown in Fig. 5. The control problem in real time is structured as 

solving the MILP by sampling time. As shown in Fig. 5, in order to control the equipment in real 

time, the operational cost in the sampling time is minimized in this control step, in contrast to the 

operational planning step in which the daily operational cost is minimized. That is, the control 

problem in real time is an optimal energy-supply problem by sampling time t = 1, ..., T, repeatedly. 

Then, the daily operational cost is calculated. The inputs are real-time actual weather data, the PV 

output data, and the energy demands. The constraints of this optimal energy-supply problem consist 

of the energy and mass flows, that is, Equations (1) to (16), the specifications of the energy systems 

and the range of comfortable room temperatures from the PMV. The decision variables are the same 

as those in the operational planning step (section 2.2.2). Additionally, in the control step, the 

operational strategies of the energy equipment and the initial values of the buffers from the 

operational planning step are input as constraints. These additional constraints are shown in Table 1. 

In Table 1, variables with superscript ‘Plan’ represent operational strategies determined in the 

operational planning step, and variables without superscript ‘Plan’ represent decision variables in 

this control step. In order to have leeway in operating the energy equipment, the constraints in Table 

1 consist of inequalities. The objective function of this paragraph is shown below. Operational costs 

in the sampling time are minimized. 

Min 𝐽𝑡 = 𝐶𝑡
e�̇�𝑡

buy
+ 𝐶𝑡

g
�̇�𝑡

buy
− 𝐶𝑡

rev�̇�𝑡
PV,rev

       (23) 

Table 1.  Additional constraints for the control step. 

Equipment Target variables Constraint 

Battery (BT) 
Output electricity from BT �̇�𝑡

𝐵𝑇,𝑜𝑢𝑡 ≤ �̇�𝑡
𝐵𝑇,𝑜𝑢𝑡,𝑃𝑙𝑎𝑛 

Input electricity into BT �̇�𝑡
𝐵𝑇,𝑖𝑛 ≥ �̇�𝑡

𝐵𝑇,𝑖𝑛,𝑃𝑙𝑎𝑛 

Heat pump water heater (HP) Input heat into HWT from HP  �̇�𝑡
𝐻𝑃,𝐻𝑊𝑇,𝑖𝑛 ≥ �̇�𝑡

𝐻𝑃,𝐻𝑊𝑇,𝑖𝑛,𝑃𝑙𝑎𝑛 

Polymer electrolyte membrane 

fuel cell (PEFC) 
PEFC ON/OFF state 𝑧𝑡

𝑃𝐸𝐹𝐶 ≥ 𝑧𝑡
𝑃𝐸𝐹𝐶,𝑃𝑙𝑎𝑛 

 

Fig. 5. An image of the control step. 

2.3. Reference method 

In this section, we construct a method which does not consider HEMS functions, as shown in Fig. 2. 

That is, the residential energy equipment cannot predict future events, communicate with each other 

through the HEMS, and get DR signals. The operational strategies of the energy equipment are 

determined in advance based on the operation modes of real machines, without prediction data and 

optimal operational planning. This method is compared with our proposed prediction-operational 

planning-control method later. 

2.3.1. Operational planning step  

Equipment such as the BT, PEFC and HP need operational strategies, and the assumed operational 

strategies of the residential energy equipment are shown in Table 2. Additionally, the initial values 

of the buffers are set to their minimal values. The assumed operational strategies are input to the 
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control step explained in the next section. On the other hand, equipment such as the CGB and PV 

do not need operational strategies because the CGB simply follows the HW demand, which is not 

supplied by other equipment, and the PV output is not a decision variable in this study. 

2.3.2. Control step 

The control step in this paragraph is the same as the control step of our proposed method (section 

2.2.3).  

3. Settings 
The real-time electricity and HW demands and PV output are actual, observed values taken from an 

existing, detached house on 12 representative days. As the past data for demand and PV predictions, 

annual measurement values from the same house are used, and the temperature, humidity and 

insolation data, which are publicly available, are used for the predictions.  

The floor plan of the model of the residential space and specifications are shown in Fig. 6. This 

house model is made of wood on the inside and heat-insulating materials on the outside, and has 

HIB, SIB and EW on the north, south, east and west sides. The temperature of the living space falls 

inside the range of comfortable temperatures which is decided by PMV.  

Table 2 shows the costs of electricity and city gas for various conditions and the profit from any 

electricity sold from the PV equipment back to the grid. 

We assume that the house has the energy equipment shown in Table 3. The operational strategies of 

the residential energy equipment assumed for the reference method are also shown in Table 3 based 

on the operation mode of real machines. The AC, HIB, SIB and EW are skipped because they are 

included in all equipment configurations.  

 

Fig. 6.  The floor plan of the model of the residential space. 

Table 2.  Costs of electricity and city gas for various conditions as well as the profit from the 

electricity sold from the PV. 

Type Kind of costs Conditions Value Unit 

Grid [21] 

Basic cost ― 1296 Yen/month 

Fuel regulatory cost ― 2.35 Yen/kWh 

Metered costs 

7:00-13:00 28.99 Yen/kWh 

13:00-16:00 54.68 Yen/kWh 

16:00-23:00 28.99 Yen/kWh 

23:00-7:00 12.16 Yen/kWh 

Gas [22] 

Basic costs 
Without CGB 1026 Yen/month 

With CGB 1458 Yen/month 

Metered costs 
Without CGB 156.11 Yen/Nm3 

With CGB 134.51 Yen/Nm3 

PV [23] Feed-in tariff (FIT) For surplus electricity 37.00 Yen/kWh 



  

Table 3.  Equipment configurations and operational strategies of residential energy equipment 

based on the real machines assumed for the reference method. 

No. System name 
Equipment 

configuration 

Assumed operational 

strategies 

1 CGB CGB none 

2 BT+CGB BT, CGB The BT charges fully until 07:00 

3 HP HP 
The HP stores thermal energy up to 30% of the 

maximum capacity of the HWT until 07:00 

4 BT+HP BT, HP The BT follows No. 2 and the HP follows No. 3 

5 
PEFC PEFC-CGS 

The PEFC generates electricity from 04:00 to 

24:00 

6 BT+PEFC BT, PEFC-CGS The BT follows No. 2 and the PEFC follows No. 5 

7 PV+CGB PV, CGB none 

8 PV+BT+CGB PV, BT, CGB The BT follows No. 2 

9 PV+HP PV, HP The HP follows No. 3 

10 PV+BT+HP PV, BT, HP The BT follows No. 2 and the HP follows No. 3 

11 PV+PEFC PV, PEFC-CGS The PEFC follows No. 5 

12 PV+BT+PEFC PV, BT,  PEFC-CGS The BT follows No. 2 and the PEFC follows No. 5 

4. Numerical simulation result 

The daily operational cost reductions, 𝜙cost  yen/day, between our proposed method and the 

reference method, are defined below as an evaluation index.  

𝜙𝑐𝑜𝑠𝑡 = 𝐽𝑟𝑒𝑓 − 𝐽𝑝𝑟𝑜
          (8) 

Where 𝐽ref  and 𝐽
pro

 are the daily operational costs of the reference method and the proposed 

method, respectively. 

This study compares not the systems but the methods. The daily operational cost reduction, 𝜙cost, 

of the energy systems are shown in Fig. 7. This shows the maximum value, the 75th percentile, the 

median value, the 25th percentile, and the minimum value of 𝜙cost from above. As can be seen in 

Fig. 7, the median values of operational cost reduction are positive except for the HP and PV+HP 

systems. The maximum median value of operational cost reduction is 51 yen/day by the BT+CGB. 

This is because the BT in the proposed method can discharge at the times when the electricity prices 

are high. In the proposed method, the operational strategies of BT are planned to discharge at the 

times when the electricity prices are high based on TOU prices and predicted demand data. On the 

other hand, in the reference method, TOU prices are not considered in the operational planning step. 

Therefore, the BT charges at times when the electricity price is low and discharges at once in order 

to minimize any losses due to self-discharge. Fig. 8 shows the demand scenarios and operation 

results of the PEFC-CGS over one day. Fig. 8(a) shows an actual and five predicted electricity 

demand scenarios and the PEFC ON/OFF state. Fig. 8(b) shows an actual and five predicted HW 

demand and thermal scenarios for the HWT. In Fig. 8, the mismatches between the five scenarios of 

predicted demands and actual demands of both electricity and HW are clear. However, the proposed 

method reduced operational costs by 24 yen/day compared to the reference method which does not 

include a prediction step. When deciding operational strategies in the operational planning step, the 

proposed method input five realistic predicted demand scenarios and minimized the expected 



  

operational cost of each of them. That is, the operational strategy is robust for mismatches between 

the predicted energy demands and actual energy demands.  

 

Fig. 7.  The daily operational cost reduction of each energy system (comparison of the methods); 

(a) the systems without PV; (b) the systems with PV. 

 

Fig. 8.  Demand scenarios and operation results for the PEFC-CGS over one day; (a) an actual 

and 5 predicted electricity demand scenarios and the PEFC ON/OFF state; (b) an actual and 5 

predicted HW demand and thermal scenarios for HWT. 

5. Conclusion 
The objective of this study was to evaluate economic potentials while including uncertainties of 

energy demands and PV output, TOU prices, and the thermal comfort of residents. We established a 

method which connects prediction, operational planning, and control steps to consider uncertainties 

of energy demands and PV output as a base of HEMS.  

We established a new method which connects prediction, operational planning and control steps as 

a base of HEMS and enabled the quantitative evaluation of operational planning methods of HEMS 

with uncertainties of energy demands and PV output. Through the computational experiment, the 

BT can reduce costs by about 50 yen/day by discharging at times when electricity prices are high. 

The PEFC-CGS can reduce costs by about 25 yen/day by operating effectively. 

In future work, we have to improve the proposed method by additional computational experiments 

with more calculation conditions such as demand data, electricity prices, and other house profiles. 

In addition, we should establish a framework to analyse the optimal operational strategies in a 

community for various exogenous conditions such as fee schedules and power grid constraints. 
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Nomenclature 

C cost conversion factor, yen/Wh e electricity 

e electricity storage level, Wh EMS energy management system 

�̇�  electricity flow rate, Wh/15min FC fuel cell 

�̇�   gas flow rate, Wh/15min FIT feed-in tariff 

J objective function, operational cost g gas 

P probability H electrical heater 

q heat storage level, Wh HEMS home energy management system 

�̇�  heat flow rate, Wh/15min HP heat pump water heater 

s scenario index HW hot water 

S total number of scenario HWT hot water tank 

t time index in input 

T total number of sampling period INV inverter 

z 0-1 integer state of equipment loss loss 

Greek symbols MILP mixed integer linear programming 

𝛿𝑡  sampling time interval, hour out output 

𝜂  efficiency, % PCU power conditioning unit 

𝜃  temperature, ℃ 
PEFC-

CGS 

polymer electrolyte membrane fuel cell 

cogeneration system 

𝜙  evaluation index Plan determined in operational planning step 

Superscripts and abbreviations PMV predicted mean vote 

AC air conditioner pro proposed method 

AUX auxiliary PV photovoltaic 

AW automatic window ref reference method 

BT battery rev reversed 

buy purchased SHC space heating and cooling 

cost cost SOFC solid oxide fuel cell 

CGB condensing gas boiler SP stochastic programming 

dem demand SSAB sunlight shielding automatic blind 

DR demand response sup supply 

  TIB thermal insulation automatic blind 
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