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Abstract: 

A mixed-integer linear programming (MILP) method for the strictly robust design of distributed energy supply 
systems is presented. The design of energy systems is a complex task and thus best addressed by 
mathematical optimization. However, conventional optimization models are deterministic while relying on 
input data which are subject to uncertainties, such as predicted future energy demands or prices. Depending 
on the error of the prediction, the determined optimal solution can become suboptimal or even infeasible for 
the actual demand. In this paper, we employ strictly robust optimization for the design of distributed energy 
supply systems minimizing the total annualized cost while providing higher flexibility and security of energy 
supply. Starting from a deterministic MILP model, the resulting robust program retains the structure of an 
MILP and, thus, can be solved efficiently. However, the generated strictly robust optimal solution exhibits 
significant additional costs compared to the deterministic optimal solution. This is due to the implicit 
assumption of higher demands and energy prices for the evaluation of the system costs. To enhance the 
comparability, in a second step, the structure and sizing of the robust solution are fixed, while the equipment 
operation is re-optimized for the nominal prices and demands. The resulting additional costs for the strictly 
robust design are only marginally larger than those of the fully deterministic problem. Our approach is used 
to assess the sensitivity of the total annualized costs to the uncertainties in the demands. A multicriteria 
approach helps the decision maker to find an appropriate trade-off between robustness and costs. 
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1. Introduction 
Decentralized energy systems (DESS) can be efficiently synthesized using mathematical methods. 

Optimization models determine the optimal structure, sizing of the units, and operation of an energy 

system [1, 2]. However, these optimization models usually rely on parameters, which are assumed 

to be known with certainty: e.g., energy demands, prices for gas and electricity, and efficiency of 

the equipment. For real-world problems, these parameters have to be predicted. Usually, perfect 

foresight is assumed for the optimization.—But what happens to the designed energy system if the 

prediction of these parameters fails due to unexpected weather conditions or changes in the 

considered processes? In this case, the previously optimal solution can become suboptimal or even 

infeasible. For example, if the energy demand of a consumer is higher than assumed in the synthesis 

of the DESS, a lack of production capacity can arise. To ensure security of energy supply, robust 

optimization methods (for a review see [3]) are applied. 

Robust optimization considers every possible outcome. Thereby, robust optimization avoids the 

need for probability distributions of the uncertain parameters, which are necessary in stochastic 

optimization [4]. Since these probability distributions are not known in general, robust optimization 

is easier applied in practice. 

Strictly robust optimization was introduced for linear programs by Soyster in 1973 [5] and restated 

by Ben-Tal and Nemirovski [6] in 1999. Strictly robust optimization ensures the feasibility of the 

solution for all scenarios while minimizing the maximal costs possible considering all scenarios. 



The resulting strictly robust solutions are very conservative and, therefore, expensive in general. For 

this reason, the frequently applied Γ-robustness was introduced by Bertsimas and Sim [7]. Herein, it 

is assumed that not all uncertain parameters vary at the same time. The level of uncertainty Γ limits 
the number of parameters varied simultaneously in one constraint and represents the degree of 

conservatism. For linear problems, the resulting program itself can be transformed into a linear 

program. Robust optimization approaches have been successfully applied to energy systems. Dong 

et al. [8] use the Γ-robustness to derive a fuzzy radial linear programming model for planning robust 

energy management systems with environmental constraints. Akbari et al. [9] employ Γ-robustness 
to optimize the installed capacity and operation of different components. 

Yokoyama et al. [10, 11] use the minimax regret approach [12], which minimizes the maximal 

possible regret considering all scenarios. The regret for a scenario is the deviation between the 

costs, if the scenario is not known a priori, and the best possible costs. Yokoyama et al. introduce a 

penalty term in the objective function for unmet energy demands and propose a solution algorithm 

for the resulting multi-level problem, which cannot be reformulated as a linear program. A modified 

minimax regret approach is applied by Dong et al. [13] to determine power generation and capacity 

expansion for uncertain demands. The adjustable robustness approach [14] determines the optimal 

values of the variables in two steps: At first, a subset of variables is fixed by robust optimization. 

Only this first subset of variables has influence on the objective function. In a second step, when the 

occurring scenario is known, the remaining variables are determined. Street et al. [15] state a tri-

level program to optimize the reserve scheduling in electricity markets with respect to possibly 

failing components in the energy system. 

In this paper, we apply the classical strictly robust optimization by Soyster et al. [5], as described 

above, to the synthesis of a decentralized energy supply system. The deterministic model has been 

formulated by Voll et al. [1]. This MILP considers the hierarchical order of structure, unit sizing, 

and operation in order to design an optimal energy supply system. In this work, we consider both 

the energy prices and the energy demands as uncertain. For the resulting model, the concept of strict 

robustness has multiple advantages: First of all, it is possible to reformulate the deduced strictly 

robust problem also into a MILP, so it can be efficiently solved by common available solvers. 

Therefore, the concept of strict robustness can easily be applied. The most important feature is that 

security of energy supply can be guaranteed with this method, because every possible outcome is 

taken into account. Furthermore, we show that the computed strictly robust optimal design costs are 

only slightly more than the solution of the deterministic model. 

The following section 2 gives a brief introduction to strict robustness and describes the 

implementation of strictly robust optimization for decentralized energy systems. In section 3, the 

approach is applied to a real-word problem and sensitivity investigations are performed. The results 

are summarized and discussed in section 4. 

2. Strictly robust design framework for decentralized energy 
supply systems 

In this section, a brief theoretical introduction to strict robustness is given, before the concept is 

applied to decentralized energy supply systems (DESS). 

2.1. Strictly robust mixed-integer linear programming 

Linear optimization problems with both continuous and integer variables are called mixed-integer 

linear problems (MILP): 

Definition 1. Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝐵 ∈ ℝ𝑚×𝑙 be matrices and 𝑐 ∈ ℝ𝑛, 𝑑 ∈ ℝ𝑙 and 𝑏 ∈ ℝ𝑚 be three 

vectors. A mixed-integer linear problem is given by [16]: 



(ℳℐℒ𝒫)   min   𝑐𝑡𝑥 + 𝑑𝑡𝑦

   s. t.    𝐴𝑥 + 𝐵𝑦 ≤ 𝑏
𝑥 ∈ ℝ𝑛

𝑦 ∈ ℤ𝑙 .

 

Here 𝑥 and 𝑦 represent continuous and integer variables, respectively. In the following section, 
binary variables are used to express the existence of the energy conversion units and continuous 

variables are used to express the sizing of the units. The vectors 𝑐 and 𝑑 in the objective function 

describe e.g. tariffs, if costs are minimized. The bound 𝑏 may be interpreted as a certain budget or 

also as demands which have to be fulfilled at least. As mentioned before, these and further 

parameters may vary and, therefore, are not known with perfect foresight. The uncertain parameters 

are contained in the uncertainty set 𝒰. In Definition 1 the deterministic problem is stated. Definition 
2 introduces the uncertain problem. The uncertain problem contains all problems which arise from 

considering every single scenario one after another. 

Definition 2. Let 

𝒰≔ {{�̃�, �̃�, �̃�, �̃�, �̃�}|�̃� ∈ 𝒰𝑐 ⊆ ℝ
𝑛, �̃� ∈ 𝒰𝑑 ⊆ ℝ

𝑙, �̃� ∈ 𝒰𝐴 ⊆ ℝ
𝑚×𝑛, �̃� ∈ 𝒰𝐵 ⊆ ℝ

𝑚×𝑙, �̃� ∈ 𝒰𝑏 ⊆ ℝ
𝑚} 

be an uncertainty set, where 𝒰𝑟 contains all possibly occurring values of parameter 𝑟 with 𝑟 ∈
{�̃�, �̃�, �̃�, �̃�, �̃�}. Then {�̃�, �̃�, �̃�, �̃�, �̃�} ≕ 𝜉 is called a scenario. The uncertain mixed-integer linear 

optimization problem (ℳℐℒ𝒫𝒰) is defined by the family 

(ℳℐℒ𝒫𝒰) ≔ ((ℳℐℒ𝒫𝜉), 𝜉 ∈ 𝒰) 

of the following problems: 

(ℳℐℒ𝒫ξ)   min   �̃�𝑡𝑥 + �̃�𝑡𝑦

   s. t.    �̃�𝑥 + �̃�𝑦 ≤ �̃�
𝑥 ∈ ℝ𝑛

𝑦 ∈ ℤ𝑙 .

 

(ℳℐℒ𝒫ξ) is the optimization problem resulting for one particular scenario 𝜉. Thus, for each 

uncertain parameter, a certain value is assumed. The problem (ℳℐℒ𝒫𝒰) contains all sub-problems 

(ℳℐℒ𝒫ξ) defined by the uncertainty set. Therefore, (ℳℐℒ𝒫𝒰)  represents the union over all 

scenarios, i.e., all problems represented by all possible values for the uncertain parameters. 

The robust counterpart minimizes the maximal possible objective function value while the 

constraints of the original Problem are forced to hold for every scenario. 

Definition 3. The robust counterpart of the uncertain problem (ℳℐℒ𝒫𝒰) is given by 

(ℳℐℒ𝒫ℛ𝒞)   min   sup
𝜉∈𝒰

�̃�𝑡𝑥 + �̃�𝑡𝑦

   s. t.    �̃�𝑥 + �̃�𝑦 ≤ �̃�      ∀𝜉 ∈ 𝒰

𝑥 ∈ ℝ𝑛

𝑦 ∈ ℤ𝑙 ,

 

which is equivalent to 

min   𝜏

s. t.    �̃�𝑡𝑥 + �̃�𝑡𝑦 ≤ 𝜏    ∀𝜉 ∈ 𝒰

�̃�𝑥 + �̃�𝑦 ≤ �̃�     ∀𝜉 ∈ 𝒰

𝑥 ∈ ℝ𝑛

𝑦 ∈ ℤ𝑙 .

 



An optimal solution of (ℳℐℒ𝒫ℛ𝒞) is called strictly robust optimal for the uncertain problem 
(ℳℐℒ𝒫𝒰). For corresponding definitions for linear problems, see [17]. 

The equivalence in Definition 3 holds, because we minimize the auxiliary variable 𝜏 which is an 

upper bound for the original target function �̃�𝑡𝑥 + �̃�𝑡𝑦—no matter which scenario occurs. In the 

robust counterpart (ℳℐℒ𝒫ℛ𝒞) the constraints are satisfied for each scenario 𝜉 ∈ 𝒰, which ensures 

the feasibility of the solution for the whole range of uncertainties. The supremum determines the 

maximal possible costs over all scenarios. Thus, the resulting solution is feasible for all scenarios 

and minimizes the costs in the worst case scenario1. 

In this paper, we consider interval-based uncertainties, i.e., every entry of an uncertain vector �̃� ∈
ℝ𝑞 can attain any value of a given interval 

�̃� ∈

(

 

[�̂�1 − 휀1
𝑟 , �̂�1 + 휀1

𝑟]

[�̂�2 − 휀2
𝑟 , �̂�2 + 휀2

𝑟]
⋮

[�̂�𝑞 − 휀𝑞
𝑟 , �̂�𝑞 + 휀𝑞

𝑟])

  

without following any probability distribution. For matrices, these intervals are defined for each 

entry. 

2.2. The strictly robust problem formulation for decentralized energy 
supply systems 

Before applying strictly robust optimization, we present the considered deterministic optimization 

problem introduced by Voll et al. [1] based on [2]. 

2.2.1. The deterministic optimization problem with perfect foresight 

Voll et al. [1] use an MILP to describe the DESS synthesis problem. The synthesis considers the 

optimization of the structure, sizing, and operation of the components. The existence of a 

component 𝑘 is represented by the binary variable 𝑦𝑘, which is enforced by the on-off-status binary 

variable 𝛿𝑘𝑡 of unit 𝑘 in time-step 𝑡 ∈ 𝐿. Continuous variables express the nominal size �̇�𝑘
𝑁 and the 

provided energy-flow �̇�𝑘𝑡 of the component 𝑘 in a certain time-period △ 𝑡𝑡. The model comprises 

boilers 𝐵, combined heat and power units 𝐶𝐻𝑃, absorption chillers 𝐴𝐶, and compression chillers 

𝐶𝐶 as possible components of the energy supply system. Quasi-stationary energy balances are 

included as constraints for every time-step 𝑡 ∈ 𝐿. For more details, see [1]. To obtain an optimal 

structure, equipment sizing, and operation, we minimize the total annualized costs: 

min   8760 h ⋅ [∑△ 𝑡𝑡 (𝑝
𝑔𝑎𝑠 ⋅ ∑ �̇�𝑘𝑡(𝛿𝑘𝑡 , �̇�𝑘

𝑁, �̇�𝑘𝑡)

𝑘∈𝐵∪𝐶𝐻𝑃

+ 𝑝𝑒𝑙,𝑏𝑢𝑦 ⋅ �̇�𝑡
𝑒𝑙,𝑏𝑢𝑦 − 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙 ⋅ �̇�𝑡

𝑒𝑙,𝑠𝑒𝑙𝑙)

𝑡∈𝐿

]

   +∑(
1

𝑃𝑉𝐹
+ 𝑝𝑘

𝑚) ⋅

𝑘∈𝐿

𝐼𝑘(𝑦𝑘 , �̇�𝑘
𝑁),

 

where 𝑝𝑔𝑎𝑠, 𝑝𝑒𝑙,𝑏𝑢𝑦 and 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙 denote the energy tariffs. �̇�𝑘𝑡(𝛿𝑘𝑡, �̇�𝑘
𝑁, �̇�𝑘𝑡) is the input energy-flow 

in time-step 𝑡 required by component 𝑘. Here, a linear approximation is used to reflect part-load 

performance. The output energy-flow of a unit  is denoted by  and the purchased and sold, 

electricity-flow is denoted by �̇�𝑡
𝑒𝑙,𝑏𝑢𝑦

 and �̇�𝑡
𝑒𝑙,𝑠𝑒𝑙𝑙

, respectivly. The present value factor 𝑃𝑉𝐹 is used 

to annualize the investment costs [18]. The factor 𝑝𝑘
𝑚 expresses the maintenance costs of unit 𝑘 as 

share of the investment costs 𝐼𝑘(𝑦𝑘, �̇�𝑘
𝑁). The investment costs are also linearized. We denote the 

resulting problem by (ℳℐℒ𝒫𝒟ℰ𝒮𝒮). 

                                                 
1 A worst case scenario is not given in general, because the supremum can also depend on more than one scenario. If 

there is no worst case scenario existing, the supremum of the costs over all scenarios is minimized. 



2.2.2. The strictly robust optimization problem 

In a DESS synthesis problem, many parameters are uncertain, such as energy prices, equipment 

performance curves, or demand time series. In the following, we confine ourselves to uncertainties 

in the gas and electricity tariffs and in all energy demands. Heating, cooling, and electricity 

demands in time-step 𝑡 are declared by �̇�𝑡
ℎ𝑒𝑎𝑡, �̇�𝑡

𝑐𝑜𝑜𝑙, and �̇�𝑡
𝑒𝑙. Let 𝜉

≔ {�̂�𝑔𝑎𝑠,  �̂�𝑒𝑙,𝑏𝑢𝑦,  �̂�𝑒𝑙,𝑠𝑒𝑙𝑙,  �̂̇�𝑡
ℎ𝑒𝑎𝑡,  �̂̇�𝑡

𝑐𝑜𝑜𝑙,  �̂̇�𝑡
𝑒𝑙} define the nominal scenario, which corresponds to the 

parameters employed in the deterministic problem with perfect foresight. 

The interval-based uncertainty set is defined by: 

𝒰≔ {{�̃�𝑔𝑎𝑠 , �̃�𝑒𝑙,𝑏𝑢𝑦, 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙, �̃̇�𝑡
ℎ𝑒𝑎𝑡, �̃̇�𝑡

𝑐𝑜𝑜𝑙, �̃̇�𝑡
𝑒𝑙}  |                                           

  

�̃�𝑔𝑎𝑠 = �̂�𝑔𝑎𝑠(1 + 𝑝𝑔),  𝑝𝑔 ∈ [min{−1,−휀𝑝𝑔} , 휀𝑝𝑔];

�̃�𝑒𝑙,𝑏𝑢𝑦 = �̂�𝑒𝑙,𝑏𝑢𝑦(1 + 𝑝𝑒),

 �̃�𝑒𝑙,𝑠𝑒𝑙𝑙 = �̂�𝑒𝑙,𝑠𝑒𝑙𝑙(1 + 𝑝𝑒),  𝑝𝑒 ∈ [min{−1, −휀𝑝𝑒} , 휀𝑝𝑒];

�̃̇�𝑡
ℎ𝑒𝑎𝑡 ∈ [min {0, �̂̇�𝑡

ℎ𝑒𝑎𝑡 − 휀𝑡
�̇�ℎ} , �̂̇�𝑡

ℎ𝑒𝑎𝑡 + 휀𝑡
�̇�ℎ] ,

�̃̇�𝑡
𝑐𝑜𝑜𝑙 ∈ [min {0, �̂̇�𝑡

𝑐𝑜𝑜𝑙 − 휀𝑡
�̇�𝑐} , �̂̇�𝑡

𝑐𝑜𝑜𝑙 + 휀𝑡
�̇�𝑐] ,

�̃̇�𝑡
𝑒𝑙 ∈ [min {0, �̂̇�𝑡

𝑒𝑙 − 휀𝑡
�̇�𝑒} , �̂̇�𝑡

𝑒𝑙 + 휀𝑡
�̇�𝑒] , 𝑡 ∈ L} .

 

Herein, the uncertainty of each parameter is expressed by the upper and lower bounds of the 

variation around the nominal value. Additionally, all parameters are restricted to positive values. 

The energy balances in problem (ℳℐℒ𝒫𝒟ℰ𝒮𝒮) cannot be satisfied for every possible scenario 𝜉 of 

the uncertainty set 𝒰 at the same time. As a result, the strictly robust solution space is empty. 
Mathematically, this is due to the equality constraints representing the energy balances, which 

cannot be satisfied for two or more different levels of demand at the same time. Thus, the equality 

constraints are relaxed to inequality constraints, such that every energy demand has to be fulfilled, 

while overproduction is allowed. Thereby, we ensure that the desired demand is at least provided.  

To obtain the strictly robust solution, we have to minimize the worst possible objective value over 

all scenarios. For this purpose, we complement the objective function with the supremum over all 

scenarios (cp. section 2.1). The resulting problem contains an infinite number of constraints—as the 

uncertainty set contains an infinite number of scenarios—and is thus not solvable. In the following, 

we transform the strictly robust counterpart of problem (ℳℐℒ𝒫𝒟ℰ𝒮𝒮) into a MILP: 

First, the relaxed energy balances are reformulated. The uncertain values �̃̇�𝑡
ℎ𝑒𝑎𝑡, �̃̇�𝑡

𝑐𝑜𝑜𝑙, and �̃̇�𝑡
𝑒𝑙  can 

be replaced by their upper bounds, because the upper bounds of the uncertain intervals of the 

demands are larger than any value within these positive intervals. Thereby, redundant constraints 

are eliminated and the resulting constraints are given by: 

∑ �̇�𝑘𝑡
𝑘∈𝐵∪𝐶𝐻𝑃

− ∑ �̇�𝑘𝑡(𝛿𝑘𝑡, �̇�𝑘
𝑁, �̇�𝑘𝑡)

𝑘∈𝐴𝐶

≥ �̂̇�𝑡
ℎ𝑒𝑎𝑡 + 휀𝑡

�̇�ℎ ∀𝑡 ∈ 𝐿

∑ �̇�𝑘𝑡
𝑘∈𝐴𝐶∪𝐶𝐶

≥ �̂̇�𝑡
𝑐𝑜𝑜𝑙 + 휀𝑡

�̇�𝑐 ∀𝑡 ∈ 𝐿

∑
𝜂𝑘𝑡
𝑒𝑙

𝜂𝑘𝑡
𝑡ℎ �̇�𝑘𝑡

𝑘∈𝐶𝐻𝑃

− ∑ �̇�𝑘𝑡(𝛿𝑘𝑡 , �̇�𝑘
𝑁, �̇�𝑘𝑡)

𝑘∈𝐶𝐶

+ �̇�𝑡
𝑒𝑙,𝑏𝑢𝑦 − �̇�𝑡

𝑒𝑙,𝑠𝑒𝑙𝑙 ≥ �̂̇�𝑡
𝑒𝑙 + 휀𝑡

�̇�𝑒    ∀𝑡 ∈ 𝐿,

 

with �̇� defining output and �̇� input energy. The labels 𝜂𝑘𝑡
𝑒𝑙  and 𝜂𝑘𝑡

𝑡ℎ denote the electrical and thermal 

efficiency of unit 𝑘, respectively. The upper bounds represent the worst case scenario for the 
demands.  

Next, the strictly robust objective function needs to be adapted. For this purpose, we introduce the 

auxiliary variable 𝜏, which is minimized while it limits the total annualized costs for every scenario 



(see section 2.1). Subsequently, the upper bound for the gas price is inserted (see (1)). This is 

allowed, because the highest price corresponds to the highest cost since the price is multiplied by 

positive numbers only: 8760 h, △ 𝑡𝑡, and �̇�𝑘𝑡(𝛿𝑘𝑡 , �̇�𝑘
𝑁, �̇�𝑘𝑡) are positive for all components 𝑘 in 

every time-step 𝑡. The uncertain electricity tariffs for purchasing and selling energy vary in the 
same way, because the price levels are correlated. As electricity sells reduce the total annualized 

costs, not only the upper bound but also the lower bound of the electricity tariff has to be taken into 

account. Herein, the supremum (see Definition 3) depends on two scenarios and no worst case 

scenario exists. 

As a result, the strictly robust objective function can be replaced by: 

min   𝜏

s. t.    8760 h ⋅ [∑△ 𝑡𝑡 (�̂�
𝑔𝑎𝑠(1 + 휀𝑝𝑔) ⋅ ∑ �̇�𝑘𝑡(𝛿𝑘𝑡 , �̇�𝑘

𝑁, �̇�𝑘𝑡)

𝑘∈𝐵∪𝐶𝐻𝑃𝑡∈𝐿

                         ∑+�̂�𝑒𝑙,𝑏𝑢𝑦(1 ± 휀𝑝𝑒) ⋅ �̇�𝑡
𝑒𝑙,𝑏𝑢𝑦 − �̂�𝑒𝑙,𝑠𝑒𝑙𝑙(1 ± 휀𝑝𝑒) ⋅ �̇�𝑡

𝑒𝑙,𝑠𝑒𝑙𝑙)] 

                                                                                    +∑(
1

𝑃𝑉𝐹
+ 𝑝𝑚) ⋅

𝑘∈𝐿

𝐼𝑘(𝑦𝑘, �̇�𝑘
𝑁) ≤ 𝜏

𝜏 ∈ ℝ,

              (1) 

where, “±” indicates that the constraint must be satisfied for plus and for minus separately, which 

thus involves two different constraints. The resulting strictly robust MILP-formulation is denoted 

by (ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮) in the following. 

3. Case study for strictly robust synthesis of DESS 
The deduced model is applied to a real-world problem described in section 3.1. In section 3.2, the 

solution with perfect foresight is generated as reference for the strictly robust solution computed in 

the section 3.3. All solutions are identified by an automated superstructure generating algorithm, 

described in [1], implemented in GAMS. The optimality gap is set to 0.0 % for all calculations. The 

optimality gap describes the maximal relative deviation of the currently found optimal objective 

function value from the theoretical optimum. Finally, a sensitivity analysis is presented for the total 

annualized costs as function of the uncertainties of the energy demand. 

3.1. The real-word Problem 

A chemical park comprising six different building complexes is considered. Each building complex 

has time-varying heating and cooling demands [19] imposed with uncertainties (see Fig. 1). Thus, 

the uncertain heating and cooling demands introduced in section 2 apply for each building complex. 

The sum of all uncertainties of all buildings corresponds to 8.2 % of the total annual cooling 

demand of 27 GWh/a and 7.3 % of the total annual heating demand of 28 GWh/a. The total 

electricity demand is 47.5 GWh/a with 32.7 % of variation. The time-steps represent aggregated 

months with similar load profiles. Additionally, winter and summer peaks are considered. The load 

profiles and their uncertainties are deduced from real-data of previous years. The site has already 

two boilers, one CHP engine, one absorption chiller, and one compression chiller installed. 

Furthermore, the site is divided in two areas (Site A and Site B). Due to the existing infrastructure, 

the cooling systems of the areas cannot be connected. Gas and electricity can be purchased from the 

public grids at a price of 6 ct/kWh and 16 ct/kWh, respectively. The power can be fed in at a tariff 

of 10 ct/kWh. As mentioned above, we consider the different energy demands to be uncertain as 

well as the energy prices and tariffs. The uncertainties of the gas and electricity tariffs correspond to 

40 % and 46 % of the original values, respectively. The cash flow time is assumed to be ten years.  



                 

Fig. 1.  Stacked bar chart of heating (a) and cooling (b) demands of building complexes for 

aggregated months and the summer and winter peaks. The sum of all uncertainties of the building 

complexes is shown as an error bar for each load period (i.e. time-step). 

3.2. Optimal solution with perfect foresight 

If perfect foresight is considered and thus the input-data is assumed to be known exactly, the 

optimal total annualized costs are 5.9 Mio.€. The corresponding solution requires the installation of 

two CHP engines, two absorption chillers, and two compression chillers, whereas, only one boiler 

and one compression chiller are retained from the old structure (see Fig. 2). 

If the energy prices rise, the solution will become sub-optimal. Even worse, the solution will be 

infeasible, if the demands increase to their upper bounds of the considered uncertainties (see Fig. 1): 

The energy demands cannot be covered. To ensure security of energy supply, we apply strictly 

robust optimization to our model. 

3.3. Strictly robust Optimization 

The strictly robust problem (ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮) determines a strictly robust optimal DESS. Because the 

problem is a MILP itself (see section 2.2.2) it can be efficiently solved by common available 

optimization-solvers. The strictly robust optimal total annualized costs are 10.3 Mio.€—an increase 

of 74.9 % to the nominal optimal value computed with perfect foresight (see section 3.2). However, 

it is necessary to have in mind that the strictly robust optimal solution considers the worst case 

scenario for the demands, i.e., the calculated solution supplies significantly more energy than the 

solution of the nominal problem. Furthermore, the strictly robust problem (ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮) assumes 

higher prices for the energy purchased. 

In order to draw a valid comparison between the nominal and the strictly robust optimal solution, 

the operation is re-optimized for the nominal scenario 𝜉 while keeping the strictly robust structure 

and sizing. The relaxation of the energy balances (see section 2.2.2) is removed and the energy 

balances are again modeled by equality constraints to prevent overproduction. The resulting 

problem for the operation optimization is formulated as: 

(ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮(𝜉))    min   𝑓 ((𝛿𝑘𝑡 , �̇�𝑘

𝑁, �̇�𝑘𝑡
′ ) , 𝜉)

   s. t.    (𝛿𝑘𝑡 , �̇�𝑘
𝑁, �̇�𝑘𝑡

′ ) ∈ argmin
(𝛿𝑘𝑡,�̇�𝑘

𝑁,�̇�𝑘𝑡)∈𝕏

sup
𝜉∈𝒰

𝑓 ((𝛿𝑘𝑡, �̇�𝑘
𝑁, �̇�𝑘𝑡), 𝜉)

�̇�𝑘𝑡
′ ∈ 𝕏

[𝛿𝑘𝑡,�̇�𝑘
𝑁]
(𝜉),

 

where 𝑓 represents the nominal objective function with undetermined operation variables �̇�𝑘𝑡
′ , and 𝕏 

represents the feasible region of the strictly robust problem (ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮). 𝕏

[𝛿𝑘𝑡,�̇�𝑘
𝑁]
(𝜉) denotes the 

solution space of the nominal problem (ℳℐℒ𝒫𝒟ℰ𝒮𝒮), but with fixed variables 𝛿𝑘𝑡, determining the 



strictly robust structure, and �̇�𝑘
𝑁, specifying the corresponding strictly robust unit sizing. Generally, 

the feasibility of the new problem cannot be guaranteed, because the minimal part-load performance 

may enforce overproduction, which is prohibited by the re-enforced equality constraints. However, 

the problem of the case study is solvable and yields a new objective function value of 6 Mio.€. 

Thus, for the same conditions, the robust structure and sizing costs only 0.8 % more than the 

nominal optimal design. Both design-options are compared in Fig. 2. The structure is also shown in 

Fig. 4 in the following section. The nominal as well as the strictly robust solution both keep only 

one boiler and compression chiller of the already existing components on Site A, while another 

existing compression chiller, a boiler, and a CHP engine are not used anymore. In the strictly robust 

structure, the newly installed CHP engines CHP1 and CHP2 are larger than those of the nominal 

solution in order to fulfill increased heating demands. To cover the cooling demands, the strictly 

robust solution installs one additional absorption chiller AC2 on Site A and AC1 is significantly 

enlarged, such that a substantial smaller compression chiller CC2 is sufficient. On Site B, two 

additional compression chillers are installed (CC4B, CC5B), while the absorption chiller AC3B is 

scaled-down, compared to the nominal solution. 

 

Fig. 2.  Optimal design including structure and sizing of the nominal problem illustrated in dark 

blue; the orange bars represent the robust optimal design; only the components AC3B, CC4B, and 

CC5B are placed on Site B. 

The corresponding total annualized costs are listed in the following Table 1. 

Table 1.  Total annualized costs (TAC) of the nominal problem (ℳℐℒ𝒫𝒟ℰ𝒮𝒮), the strictly roust 

problem (ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮), and the operation-optimizing problem (ℳℐℒ𝒫ℛ𝒞

𝒟ℰ𝒮𝒮(𝜉)) for the nominal 

scenario with the strictly robust optimal design 

problem TAC, Mio.€ Deviation from nominal TAC, % 

(ℳℐℒ𝒫𝒟ℰ𝒮𝒮) 5.91 - 

(ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮) 10.34 74.9 

(ℳℐℒ𝒫ℛ𝒞
𝒟ℰ𝒮𝒮(𝜉)) 5.96 0.8 

 

Thus, a small increment of the total annualized costs can induce higher flexibility and therefore 

higher security of energy supply. In particular, the energy supply system features more flexibility, if 

the structure contains many chillers. In [20], this behavior was deduced by analyzing different near-

optimal solutions of the synthesis problem. Our computed solution substantiates this conjecture: 

three additional chillers are installed in the strictly robust design. The reason for higher flexibility is 

the larger capacity of cooling. Varying heating demands can be fulfilled by shifting cooling 

generation either from absorption chillers to compression chillers or vice versa. Accordingly, it is 

sufficient to install larger heating units without adding more components. 



3.4. Sensitivity analysis of the strictly robust solution 

The strictly robust concept ensures that the solution is feasible no matter which scenario occurs. 

However, lower and upper bounds of the considered uncertain intervals are, in general, unknown 

themselves. Thus, we analyze the sensitivity of the total annualized costs to the variation of the 

demand uncertainties. In the following, we vary the lower and upper bounds of the uncertain 

intervals by scaling the uncertainty size 휀𝑡
�̇�ℎ, 휀𝑡

�̇�𝑐 respectively 휀𝑡
�̇�𝑒 for each time-step 𝑡 ∈ 𝐿 with the 

parameter 𝜔 ∈ [0, 2]. E.g., the resulting uncertain interval for the heating demand is given by 

[min {0, �̂̇�𝑡
ℎ𝑒𝑎𝑡 − 𝜔 ⋅ 휀𝑡

�̇�ℎ} , �̂̇�𝑡
ℎ𝑒𝑎𝑡 +𝜔 ⋅ 휀𝑡

�̇�ℎ]. 

Figure 3 shows the total annualized costs as function of the uncertainty sizing-factor 𝜔. 

 

Fig. 3.  Sensitivity analysis of the total annualized costs (TAC) on the uncertainty sizing-factor 𝜔. 

The enlarged markers for 𝜔 =1 correspond to the results of section 3.3. In (a) the strictly robust 

optimal values are shown. Figure (b) depicts the total annualized costs (illustrated by green “×”) 

with re-optimized operation relying on the strictly robust design; the blue “+” represents the 

optimal total annualized costs for the nominal scenario computed in section 3.2. 

A higher uncertainty sizing-factor 𝜔 implicates higher robustness. As expected, increasing the 

sizing-factor 𝜔 leads to higher total annualized costs. Remarkable in Fig. 3 (a) is the linear trend of 
the curve, which shows that the costs do not increase disproportionately. The linearity is due to high 

changes of the operation costs (from 7.5 Mio.€ to 11.9 Mio.€) dominating the variation of the 

annualized investment costs (from 0.35 Mio.€ to 0.48 Mio.€). The part-load efficiencies of the 

components have a limited impact, such that the operation costs depend nearly linearly on the 

demand. 

However, following the explanation of section 3.3, we re-optimize the operation of the given 

strictly robust optimal design for the nominal scenario to obtain a realistic comparison of the cost: 

Hence, we fix the variables determining the structure of the DESS and the sizing of the components. 

The optimal values for the operation-variables are calculated anew for the nominal scenario. 

Equality constraints are re-inserted to preclude overproduction. The resulting total annual costs are 

represented in Fig. 3 (b). 

As observed in section 3.3, the cost-increase for the robust solution is linear in the nominal 

scenario. Noticeable are the jumps in the curve of Fig. 3 (b). These jumps exists due to different 

numbers of installed units: When the uncertainty sizing-factor 𝜔 changes from 0 to 0.1, one 

compression chiller less is needed, while another absorption chiller with lower investment costs 

should be installed.  Changing 𝜔 from 1 to 1.1, the amount of compression chillers reduces by one. 

When 𝜔 is equal to 1.2 instead of 1.1, the strictly robust design includes one additional, expensive 
CHP engine. These variations in the structure are shown in Fig. 4. 



 

Fig. 4.  The gray components illustrate the optimal structure for the deterministic model (adapted 

from [1]). The union of the gray, green, and light yellow components presents the robust optimal 

structure with uncertainty sizing-factor 𝜔 =1, the gray and green units the one with factor 1.1, and 
the gray, green, and dark violet with factor 1.2. 

The sensitivity analysis motivates a multi-objective problem: The uncertainty sizing-factor is 

maximized, while the total annualized costs are minimized (see Fig. 3 (b)). On the one hand, this 

multi-criteria analysis favors high robustness to ensure energy supply and, on the other hand, aims 

at economic viability by low annual costs. These two criteria are in general contradicting and a non-

trivial Pareto-front can be observed. For an elaboration of multi-criteria optimization see [21]. In 

particular, not all computed objective function values contribute to the Pareto-front: For 𝜔 equal to 

0, 0.7, 0.9, 1, or 1.2, there are other solutions which are better concerning the total annualized costs 

as well as the sizing-factor 𝜔 (see Fig. 3 (b)). In fact, the strictly robust design computed in section 

3.3 (𝜔 = 1), is not efficient, because the optimal solution generated with 𝜔 = 1.1 yields a higher 
robustness at lower total annualized costs. Thus, the strictly robust structure and sizing generated by 

using 𝜔 = 1.1 shold be prefered. As a result, this multi-criteria analysis identifies good trade-offs 

between the total annualized costs and the robustness of the solution. 

4. Conclusion 
We apply the concept of strict robustness to optimization of decentralized energy supply systems. A 

simplification for interval-based uncertainties is employed, which allows reducing the problem 

complexity to an MILP. Thereby, strict robustness can easily be applied to decentralized energy 

supply system problems. The resulting MILP models can be solved by common available solvers. 

Subsequently, the presented approach is applied to a real-world case study from the pharmaceutical 

industry. The costs of the strictly robust optimal solution exceed the costs for the deterministic case 

by 75 %. In order to achieve a sound comparison, the equipment of the strictly robust design is 

employed for optimal operation for the nominal input parameters. The resulting costs for the strictly 

robust design are only slightly larger (0.8 %) than in the fully deterministic problem. The sensitivity 

of the total annualized costs to the size of uncertainty is analyzed in a multicriteria approach. The 

analysis identifies solutions with higher robustness at lower additional costs. With the presented 

method, energy supply systems featuring higher flexibility and security of supply at only marginally 

additional costs can be designed. The multicriteria evaluation can help the decision maker to find an 

appropriate trade-off between robustness and expected total annualized costs. 
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Nomenclature 
AC set of absorption chillers, which might be installed 

B set of boilers, which might be installed 

CC set of compression chillers, which might be installed 

CHP combined heat and power units, which might be installed 

�̇�ℎ𝑒𝑎𝑡 heating demand, kW 

�̇�𝑐𝑜𝑜𝑙 cooling demand, kW 

�̇�𝑒𝑙 electricity demand, kW 

𝐼 investment costs, € 

L set of time-steps 

𝑝𝑒𝑙,𝑏𝑢𝑦 tariff for purchasing electricity, € 

𝑝𝑒𝑙,𝑠𝑒𝑙𝑙 tariff for selling electricity, € 

𝑝𝑔𝑎𝑠 tariff for purchasing gas, € 

𝑝𝑚 fraction of the investment costs to calculate the maintenance costs 

𝑃𝑉𝐹 present value factor 

𝒰 uncertainty set 

�̇� input energy-flow, kW 

�̇�𝑒𝑙,𝑏𝑢𝑦 purchased energy-flow, kW 

�̇�𝑒𝑙,𝑠𝑒𝑙𝑙 sold energy-flow, kW 

�̇�𝑁 installed nominal power-flow, kW  

𝑦 binary variable for the existence of a unit 

Greek symbols 

𝛿 on-off-status binary variable 

△ 𝑡 duration of a time-period, a 

휀𝑝𝑔,  휀𝑝𝑒 relative uncertainty for the gas and electricity tariffs 

휀�̇�ℎ,  휀�̇�𝑐,  휀�̇�𝑒 absolute uncertainty for heating, cooling and electricity demand, kW 

𝜂𝑒𝑙 ,  𝜂𝑡ℎ electrical and thermal efficiency 

𝜉 scenario 

𝜏 auxiliary variable 

𝜔 uncertainty sizing-factor 

Subscripts and superscripts 

k component 

t time-step 

ˆ nominal input value 

˜ uncertain input value 

  ̲ fixed variable 

References 
[1] Voll P., Klaffke C., Hennen M., Bardow A., Automated superstructure-based synthesis and 

optimization of distributed energy supply systems. Energy 2013;50:374–388. 

[2] Yokoyama R., Ose S., Optimization of energy supply systems in consideration of hierarchical 

relationship between design and operation. ECOS 2012: Proceedings of the 25th International 



Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of 

Energy Systems; 2012 Jun 26-29; Perugia, Italy. Firenze University Press:389:1–13. 

[3] Goerigk M. Algorithms and Concepts for Robust Optimization [dissertation]. Göttingen, 

Germany: Georg-August Universität Göttingen; 2012. 

[4] Birge JR., Louveaux F., Introduction to Stochastic Programming. 2nd ed. Springer; 2011. 

[5] Soyster AL., Technical Note – Convex Programming with Set-Inclusive Constraints and 

Applications to Inexact Linear Programming. Operations Research 1973;21(5):1154–1157. 

[6] Ben-Tal A., Nemirovski A., Robust solutions of uncertain linear programs. Operations 

Research Letters. 1999;25(1):1–13. 

[7] Bertsimas D., Sim M., The Price of Robustness. Operations Research 2004;52(1):35–53. 

[8] Dong C., Huang GH., Cai YP., Liu Y., Robust planning of energy management systems with 

environmental and constraint-conservative considerations under multiple uncertainties. Energy 

Conversion and Management 2012;65:471–486. 

[9] Akbari K., Nasiri MM., Jolai F., Ghaderi SF., Optimal investment and unit sizing of distributed 

energy systems under uncertainty: A robust optimization approach. Energy and Buildings 

2014;85:275–286. 

[10] Yokoyama R., Ito K., Murata T., Robust Optimal Design in Multistage Expansion of a Gas 

Turbine Cogeneration Plant Under Uncertain Energy Demands. Journal of Engineering for Gas 

Turbines and Power 2004;126(4):823. 

[11] Yokoyama R., Fujiwara K., Ohkura M., Wakui T., A revised method for robust optimal design 

of energy supply systems based on minimax regret criterion. Energy Conversion and 

Management 2014;84:196–208. 

[12] Yaman H., Karasan OE., Pinar MC., The robust spanning tree problem with interval data. 

Operations Research Letters 2001;29:31–40. 

[13] Dong C., Huang GH., Cai YP., Xu Y., An interval-parameter minimax regret programming 

approach for power management systems planning under uncertainty. Applied Energy 

2011;88(8):2835–2845. 

[14] Ben-Tal A., Goryashko A., Guslitzer E., Nemirovski A., Adjustable robust solutions of 

uncertain linear programs. Mathematical Programming, Ser A 2003;99:351–376. 

[15] Street A., Moreira A., Arroyo JM., Energy and Reserve Scheduling Under a Joint Generation 

and Transmission Security Criterion: An Adjustable Robust Optimization Approach. IEEE 

Transactions on Power Systems 2014;29(1):3–14. 

[16] Floudas CA., Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. 

Oxford University Press 1995. 

[17] Ben-Tal A., Ghaoui LE., Nemirovski A., Robust Optimization. Princeton and Oxford: 

Princeton University Press; 2009. 

[18] Broverman SA., Mathematics of Investment and Credit. 5th ed. ACTX Publications, Inc. 2010. 

[19] Voll P., Automated Optimization-Based Synthesis of Distributed Energy and Supply Systems 

[dissertation]. Aachen, Germany: RWTH Aachen University; 2013. 

[20] Voll P., Hennen M., Klaffke C., Lampe M., Bardow A., Exploring the near-optimal solution 

space for the synthesis of distributed energy supply systems. Chemical Engineering 

Transactions 2013;35:277–282. 

[21] Ehrgott M., Multicriteria Optimization. Auckland, New Zealand: 2nd ed. Springer; 2005. 


