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Abstract: 

The integration of weather forecasts and demand prediction into the energy management system of buildings 
is usually achieved using a model-based predictive control. The performance of such control techniques 
strongly depends on the accuracy of the thermal model which describes the building behavior. However, 
increasing the model complexity results in a reduced computational efficiency of the optimization problem 
which is an intrinsic part of the model predictive control.  
In this paper, a linear control-oriented thermal model of a commercial building is considered as the base model. 
Using the Particle Swarm Optimization technique, the parameters of the model are identified and the 
performance of the improved model is compared with the actual measurements. Afterwards, the improved 
model is used by a Kalman filter to predict the temperature and the heating/cooling demand of the building.  

The investigations are based on a commercial building located in the campus of ETH Zurich in Switzerland. 
Long-term measurements of temperature and power flows are used for the parameter identification. Initial 
parameter values are provided by the building manufacturing datasheet. The results of the case-study show 
that a very accurate temperature prediction can be achieved even for a four-day horizon, with a maximum 
absolute error of one degree Celsius. 
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1. Introduction 
 

According to a review [1] published in 2008, the building section accounts for about 40% of final 

energy demand. A big part of this demand belongs to commercial and office buildings, which are 

usually equipped with heating, ventilation, and air-conditioning (HVAC) systems. 

Since as early as 1970s, researchers [2] have tried to improve the operation strategy of such HVAC 

components to reduce the required energy demand, shift the time-of-use, and increase the efficiency 

of the overall system. In recent years, heuristic control approaches have been replaced by model-

based predictive control (MPC) as an optimal operation strategy. These novel methods enable the 

energy management system to calculate the thermal and electrical demand of the building within 

foreseeable future using weather and occupancy forecasts, building thermal model, and statistics form 

previous measurements. As a result, periods with overheating or overcooling are avoided, resulting 

in lower energy costs and higher comfort for the occupants [3]. In many studies, authors have 

demonstrated the potential of MPC for operation of HVAC system [4] as well as designing the 

building components [5, 6]. 

A requirement for MPC is an availability of predictions. Usually a forecast of external data such as 

temperature and solar irradiations is available via the closest weather station. However, MPC also 

requires a relatively accurate model to predict the thermal behavior of the building and the energy 

demand. Contrary to weather forecasts, the parameters of such thermal model have to be known 



beforehand or need to be identified by the energy management system. This is especially important 

since specific parameters such as the thermal mass and thermal heat transmittance are not constant 

during the operation life of the building.  

Generally there are two approaches for the parameter identification of already existing models. On 

the one hand, an offline identification technique incorporates a set of previously measured data from 

the internal and external signals in order to tune the parameters such that the simulated output of the 

model fits the actual measurements in the best possible way. This method can be computationally 

sophisticated, since the offline identification can take place well before the actual energy management 

system will need the calibrated model; hence computation time not being an issue. On the other hand, 

an online identification technique is an algorithm which runs in parallel to the actual building 

operation and tries to recalibrate the model parameters at each time step, using the most up-to-date 

measurements and the current states of the system. The online identification needs to be 

computationally more efficient compared to the offline approach, since it is often placed on the less 

powerful but more compact processing units which are available onsite. 

In this paper, first the proposed thermal model for a test commercial building is provided. Then in 

section 3, firstly an offline identification algorithm based on particle swarm optimization (PSO) [7] 

is presented, aiming at finding a first set of acceptable model parameters. Then an extended Kalman 

filter (EKF) [3] is used for online improvement of parameters while a prediction of internal building 

temperature is generated. Finally, the results of the identification and prediction phases are shown 

and the performance of different setups are discussed and brought to a conclusion. 

 

2. Thermal Model for Commercial Buildings 
 

Complexity of the thermal model directly affects the computational effort of both the parameter 

identification and the state prediction processes. Therefore, it is crucial to find a compromise between 

the model accuracy and simplicity. A thermal model with a single temperature zone, also known as 

the 1R1C model, is discussed by the authors in [3]. The 1R1C model is not capable of capturing the 

temperature development in different zones or rooms in a building, but when a study of the total 

HVAC demand is intended, it can be sufficient. In other words, the model is simple enough for the 

parameter identification stage and still accurate enough for the temperature prediction process. 
 

 

Fig. 1.  The 1R1C thermal model of the building. 
  

Figure 1 shows the control-oriented 1R1C model in the form of a lumped-parameter equivalent using 

electrical elements. The voltages Ta and Tr represent the ambient and room temperatures, 

respectively. The total heat capacity of the building is shown as the capacitor C. The total heat 

transmittance through the walls and windows is lumped into the resistance U-1, which is the equivalent 

of a conductance U. Finally, the heat-gain powers are lumped into a current source shown as Ptotal. In 

order to obtain the thermal equation, Kirchhoff’s current law is applied to the node in the middle. The 

law states that the summation of currents flowing out of a node is equal to zero. This will result in the 

following equation: 



 

 

In (1), the first term shows to the current of the capacitor in the form of a derivation of the voltage 

multiplied by the capacitance. The second term is the current flowing in the resistor, calculated as the 

conductance multiplied by the voltage difference. The last term is the current flow representing the 

total heat-gain power entering the building envelop. The elements of the total heat-gain power are 

shown below. 
 

 

 
 

In (2.1), Psun is the heat-gain power from solar irradiations which is calculated from raw solar 

irradiation using the Perez’s model [1]. The second term, Pint, includes the internal heat-gain power 
from the electrical devices, such as lights and computers, as well as the heat introduced by the 

presence of people in the building. The last term, Phvac, represents the power from heating, ventilation, 

and air-conditioning system, which can be subdivided into the heating power Pheat, cooling power 

Pcool, and ventilation power Pven, as shown in (2.2). 

Next, the thermal model is discretized to be used in a computer-based simulation. For this, an exact 

discretization, also known as a zero-order hold discretization, is applied to (1). The result is shown in 

(3), where ts is the sample time. 
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Introducing two new parameters α and β results in a simplified vectorized form, as shown below. 
 

𝑇𝑟[𝑘] = (1 − 𝛼)𝑇𝑟[𝑘 − 1] + (𝛼      𝛽) (
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In case of a commercial building, the heat-gain powers are usually in the order of 105 [W] while 

temperatures are in the order of 102 [K]. However, typical values for α and β are in the orders of 10-4 
[-] and 10-7 [K/J], respectively. These differences in the orders of magnitude is disadvantagous for 

numerical computations such as kalman filtering. Therefore, the temperatures are calculated in [kK] 

and the powers in [MW]. This change of units will normalize the problem. Hence, (4) is re-written as 
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−3𝛼)𝑇𝑟[𝑘 − 1] + 10
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The values of U and C can later be derived from α and β using 
 

𝑈 = 103
𝛼

𝛽
 ,       𝐶 =

−𝑈𝑡𝑠

ln(1−10−3𝛼)
 .                  (6) 

 

While these equations are used for an offline identification of parameters U and C, it is crucial to 
perform a continuous online identification of them while operating the building. The reason is that 

the building occupants will constantly modify these parameters, for example by bringing in or 

removing some furniture, or by altering the state of windows and doors. Even more dramatic changes 

are applied when the building goes through a partial or total renovation. Hence, the online parameter 

and state identification is added to the system to provide a persisitent improvement of the thermal 

model. In addition to of U and C, there are uncertainties in the value of the heat-gains which 

𝐶
𝑑𝑇𝑟

𝑑𝑡
+ 𝑈(𝑇𝑟 − 𝑇𝑎) − 𝑃𝑡𝑜𝑡𝑎𝑙 = 0                    (1) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑢𝑛 + 𝑃𝑖𝑛𝑡 + 𝑃ℎ𝑣𝑎𝑐                 (2.1) 

𝑃ℎ𝑣𝑎𝑐 = 𝑃ℎ𝑒𝑎𝑡 − 𝑃𝑐𝑜𝑜𝑙 + 𝑃𝑣𝑒𝑛                 (2.2) 



eventually affect the temperature. For example, the Perez’s model has only a rough 
approximation of how solar irradiations are distributed over the sky, close mountains, or 
nearby buildings. Therefore, the actual value of the solar heat-gain can be different from what 
is calculated. In order to include the uncertainty of the heat-gains, three new parameter are 
added to (5.1) as coefficients: 

𝑇𝑟[𝑘] = (1 − 10
−3𝛼)𝑇𝑟[𝑘 − 1] + 10

−3 (𝛼    𝑘𝑠𝑢𝑛𝛽    𝑘𝑖𝑛𝑡𝛽    𝑘ℎ𝑣𝑎𝑐𝛽)

(

 

𝑇𝑎[𝑘 − 1]

𝑃𝑠𝑢𝑛[𝑘 − 1]

𝑃𝑖𝑛𝑡[𝑘 − 1]

𝑃ℎ𝑣𝑎𝑐[𝑘 − 1])

 .            (7) 

 

In the next section, the structure of the parameter identification problem is explained. 

 

3. Problem formulation 
 

The goal is to find an optimal set of parameters shown in (7) which enables the output of the thermal 

model to follow the actual temperature of the building. This is not a modeling problem since the 

structure of the model is already defined. Instead, the interest is to calibrate the model to capture the 

behavior of the system. 

 

3.1. Identification procedure 

 

The recursive discrete model in (5) is used for parameter identification using two different algorithms 

for offline and online identification methods. Figure 2 depicts the structure of the whole procedure 

using a block diagram. The building block represents the actual plant, from which the measurements 

are obtained.  

The particle swarm optimization (PSO) block is where the offline identification takes place. This 

process needs a thermal model of the building as well as a recorded set of measurements, which is 

provided by the data logger. The output of the PSO is a primary set of calibrated building parameters, 

described in (7).  

Next, the online identification process using an extended Kalman filter (EKF) is started. The EKF 

requires a fresh set of measurements on the external and internal temperatures and the heat-gains. The 

EKF then produces a constantly improved version of building parameters together with an estimation 

of the internal temperature. The outputs of the EKF can then be used for demand estimation of the 

building. 

 

3.2. Choice of parameters 

 

Since the identification process is computationally very expensive, the parameters are divided into 

two group to be used in the offline or the online process, as shown below. 
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Fig. 2.  The block diagram of the procedure. �̂�𝑟 represents the estimation of 𝑇𝑟. 

 

As shown in Fig. 2, the optimal parameters of the offline identification are passed to the online stage, 

which implies that the identification of θon is dependent on θoff. The optimal values of parameters at 
the end of each stage are displayed in section 4. 

 

3.3. Studied building 

 

The studied building is a commercial building located in the campus of the ETH Zurich in 

Switzerland. The building was constructed in 2007, has 6 floors and is fully air-conditioned. Hundreds 

of sensors in various locations measure the temperature every 15 minutes. The exhaust air is blown 

from the occupied areas to the atrium. The temperature of the final exhaust air leaving the building is 

considered as the single zone temperature used in the 1R1C model. 

Commercial and office buildings regularly have a very limited need of domestic hot water, hence 

neglected in this investigation. On the contrary, the electrical power of the lighting and computing 

services comprise a big portion of the internal heat-gains. Figure 3 demonstrates the measurements 

obtained from the building during 3 months in 2011. The external temperature and solar irradiations 

are measured in a weather station located on the roof of the building. The internal temperature is 

mostly kept within a range of 22 and 26 degrees Celsius. The internal heat-gains show a pattern which 

matches the building occupancy, while there is still considerable electricity demand during the 

weekend due to the existence of a server room.  

It is also noticeable that the internal heat-gains are in the same level of magnitude as the solar and 

hvac powers. Looking at the hvac power measurements, the mostly negative values reveal that the 

building is in fact in the cooling season. However, at specific period it can occur that the ventilation 

becomes the dominant term in (2.2), resulting in a positive value (for example, during the third part 

of August). 

 

4. Results 
 

In order to provide a concrete evaluation of the suggested algorithm, the measurements are divided 

into two separate group. The first group, from August 1st to September 11th, are used for the offline 



identification. The second group, from September 12th to October 31st, are used for the online 

identification as well as temperature prediction. Since the offline identification requires the whole set 

of data at once, the same data cannot be used for verification. Therefore, the performance of the online 

identification at the beginning of the second period is used to validate the correctness of the model. 

The second stage, i.e. the online identification, takes place at each time step, hence there is no need 

for a validation. In other words, at each step a new set of measurements is received, therefore an over-

fitting of the model does not occur. 

The simulations are implemented on MATLAB and the measurements are provided by the technical 

staff of ETH Zurich using a web portal. 
 

 

Fig. 3.  Measurement from the building shown for the months of August, September, and October 2011. 

 
4.1. Offline Identification using PSO 

 

Particle swarm optimization is an evolutionary optimization technique and was introduced in 1995. 

The interested reader is referred to [8] for further study on PSO and resources available. In this paper, 

the PSO is used to calibrate the parameters of the pre-defined model using a stored set of 

measurement. Similar to other optimization algorithms, the PSO aims at minimizing a cost function 

while satisfying a set of constraints. Table 1 lists the constraints used for the offline identification. 
 

Table 1.  Settings for the PSO during offline identification 

Parameter Minimum Maximum Parameter Minimum Maximum 

α 0.25 0.45 kint 0.9 1.1 

β 0.02 0.06 khvac 0.9 1.1 

ksun 0.9 1.1 PSO generations 1 500 



For this study, the PSO has a population of 50. The boundaries for the parameters 𝛼 and 𝛽 are 

selected based on the values provided by the building datasheet. The cost function for the PSO is 

defined as the least absolute deviations (LAD), described as 
 

𝑐𝑜𝑠𝑡𝑃𝑆𝑂 = ∑ |�̂�𝑟[𝑘] − 𝑇𝑟[𝑘]|𝑘                      (9) 
 

which penalizes a difference between the real and the estimated internal temperature. With the cost 

function in (9), the optimal offline parameters are found using 
 

𝜃𝑜𝑓𝑓,𝑜𝑝𝑡 = argmin
𝜃𝑜𝑓𝑓

  𝑐𝑜𝑠𝑡𝑃𝑆𝑂(𝜃𝑜𝑓𝑓) .                 (10) 

 

For the given problem, the offline identification process is completed within 10 minutes on a typical 

personal computer with a CPU clocking at 2.2 GHz and 8 GB of memory. Table 2 shows the final 

values for the identified parameters.  

Table 2.  Results of the offline identification stage. 

Parameter Value Parameter Value 

α 0.3000 khvac 1.0772 

β 5.6865×10 -2 C 1.5825×10 10 

ksun 0.9256 U 5275.7 

kint 0.9691 Final generation 146 
 

Figure 4 shows the performance of the model after the offline identification has optimized the 

parameter values. The model is accurate enough to capture the main dynamic of the building thermal 

behavior which is rather slow. However, it fails to follow the faster dynamics, resulting in a damped 

response when sharp peaks and valleys occur (e.g. between August 15 and August 21). 
 

 

Fig. 4.  Performance of the model with parameters identified offline with PSO. 



The model is capable of simulating the development of internal temperature by a maximum absolute 

error of 0.5 degrees Celsius. Introducing a more complex thermal model which integrates the 

dynamics of the internal air, the internal and external walls, and furniture inside the building 

separately will improve the simulation results [3]. However, such precision is unnecessary for the 

target of this study. 

 

4.2. Online Identification using EKF 

 

The standard Kalman filter is an algorithm mainly used for estimation of system states. This filter is 

the optimal approach if measurement noise and plant disturbances are present. When the problem of 

parameter identification is added, an extended Kalman filter (EKF) is needed to provide the so-called 

dual-estimation. The reason is the introduction of an augmented state vector, which results in non-

linear state-space equations. The system is described using the following discrete-time formulation 
 

{
[
𝑥[𝑘]

𝜃𝑜𝑛[𝑘]
] = [

𝐹(𝜃𝑜𝑛[𝑘 − 1])𝑥[𝑘 − 1] + 𝐺(𝜃𝑜𝑛[𝑘 − 1])𝑢[𝑘 − 1]

𝜃𝑜𝑛[𝑘 − 1]
] + [

𝐺𝑥
𝐺𝜃
] 𝜔[𝑘 − 1]

𝑦[𝑘] = 𝐻(𝜃𝑜𝑛[𝑘])𝑥[𝑘] + 𝑣[𝑘]

            (11) 

 

where 𝜃𝑜𝑛, 𝑥, 𝑢, and 𝑦 represent the vectors for parameters, state, input, and output, respectively. The 

variables 𝜔 and 𝑣 denote the plant disturbances and measurement noise, respectively. The matrices 

𝐺𝑥 and 𝐺𝜃 depend on the plant and in this study they are found using the measurement data. The 

variables 𝑥 and 𝑢, as well as the matrices 𝐹, 𝐺, and 𝐻 are defined as 
 

{
𝑥 = 𝑇𝑟 ,                         𝑢 = [𝑇𝑎 𝑃𝑠𝑢𝑛 𝑃𝑖𝑛𝑡 𝑃ℎ𝑣𝑎𝑐]T

𝐹 = 1 − 10−3α ,         G = 10−3[𝛼 𝑘𝑠𝑢𝑛𝛽 𝑘𝑖𝑛𝑡𝛽 𝑘ℎ𝑣𝑎𝑐𝛽] ,          H = 1 
               (12) 

 

which is consistent with (7). More detailed equations on implementation of EKF are found in [9]. 

 

 

Fig. 5.  The predicted internal temperature using the model with parameters identified online with EKF. 

 



The EKF is initialized using the set of offline identified parameters from PSO, as shown in Table 2. 

Next, the new estimation of parameters and the predicted internal temperature are found. Figure 5 

shows the prediction of temperature for prediction horizons between 1 day and 4 days ahead. 

The errors corresponding to Fig. 5 are shown in Table 3. It proves that a prediction of internal 

temperature for 4 days ahead is possible with a maximum absolute error of almost 1 degree Celsius. 

The final step is to calculate a prediction of the demand for heating or cooling. 
 

Table 3.  Maximum and mean absolute errors for different prediction horizons.  

Prediction horizon Maximum absolute error [K]  Mean absolute error [K] 

1 day  0.64806 0.10171 
2 days  0.71679 0.14776 
3 days  0.85049 0.18029 
4 days 1.00910 0.17898 

4.3. Demand Prediction 

 

Once a prediction of internal temperature is available, the HVAC demand can be calculated using (7). 

This lead to 
 

�̂�ℎ𝑣𝑎𝑐[𝑘] = 𝑓(�̂�𝑟[𝑘 + 1], �̂�𝑟[𝑘], �̂�𝑎[𝑘], �̂�𝑠𝑢𝑛[𝑘], �̂�𝑖𝑛𝑡[𝑘]).              (13) 

 

The predicted internal temperature, �̂�𝑟, is the output of the EKF stage. Furthermore, it is not possible 

to assume a perfect knowledge of the future external temperature, �̂�𝑎, and future solar heat-gain, �̂�𝑠𝑢𝑛. 

Therefore, the predictions should, for example, be aquired from a local weather station. Finally, a 

prediction of internal heat-gains, �̂�𝑖𝑛𝑡, is required. This is especially a very complicated task since the 

signal is very stochastic. There are several machine learning methods which can be used to provide 

an estimate of such uncertain signals using pattern recognition techniques, for example the artificial 

neural networks (ANN) [10] and the support vector machine (SVM) [11].  

 

5. Conclusions 
 

In this paper, an algorithm for parameter identification of a commercial building is presented. First, 

a set of parameters related to the building mass and thermal transmittance, as well as coefficients 

corresponding to the effect of heat-gains on the internal temperature are identified. This stage is 

performed offline with a particle swarm optimization method, while previously stored measurements 

are used. Afterwards, an extended Kalman filter enables a continuous improvement of parameters 

using an online identification. At the same time, the EKF provides a prediction of the state, i.e. the 

internal temperature, for the upcoming time steps. The results suggest that the algorithm is accurate 

enough for predictions as far as 4 days ahead, with a maximum error of 1 degree Celsius. However, 

at this stage the future boundary conditions such as weather forecast including the external 

temperature and solar irradiations as well as internal electricity demand is assumed to be known 

within the prediction horizon. In reality, such assumption is not correct. Various pattern recognition 

and machine learning methods can be used to create statistical models and to provide such predictions. 

Finally, a prediction of heating or cooling demand can be achieved using the obtained prediction of 

internal temperature. The authors will focus the future research on statistical modeling of the 

boundary conditions in order to improve the demand predictions. 
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