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Abstract: 

The need of sustainable use of available energy resources is undeniable. This can be achieved only through 
1) efficient design of energy systems and 2) optimal control of energy systems during operation. 
Traditionally, these two tasks are tackled with opposite modeling strategies. Complex and computationally 
expensive models (CFD, finite elements, etc.) are used for designing purposes; simplified inexpensive 
models (black box models, transfer functions, etc.) are employed for control purposes. 
In this paper we consider and alternative approach called Proper Generalized Decomposition (PGD) that 
combines the accuracy of CFD with the “lightness” of black box models. A thermocline thermal energy 
storage (TES) system is considered in the present analysis to show the attractive features of PGD. An 
accurate but at the same time computationally inexpensive model is developed considering a solution in a 
separate form (i.e. a PGD solution) of the energy equation which describes the evolution of the TES 
temperature both in time and space. More thrillingly, we show how to include a priori in the solution the effect 
of design/operational parameters by finding once for all a generalized solution which, beside space and time, 
contains the parameters as further “dimensions”. 
To summarize, this work presents a novel approach to energy systems modeling which combines both 
accuracy, computational efficiency, and flexibility. These features makes PGD an attractive methodology 
which is worth of further use in the field of energy systems design and control.  
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1. Introduction 

1.1 – Energy systems modeling: current paradigm 

A model, as defined by the philosopher Ludovico Geymonat (1908-1991) [1], is a quantitative 

description of a real phenomenon (or system), obtained from the application of theories, that are 

built to obtain information on the phenomenon (or system). The need of modeling arises from a 

question that is posed concerning the phenomenon/system which cannot be answered directly. The 

same inquiry is posed to the model which answer becomes the reply to the question on the 

phenomenon/system. Since the dawn of scientific method, models have been persistently developed 

by researchers to acquire insight into physical phenomena and to develop new technologies. 

Nowadays, modern engineering strongly relies on modeling in order to deal with complex 

problems. The complexity may arise from intricate physical phenomena, unconventional geometry 

of systems, variable operating conditions, uncertainties, etc. Nevertheless, when a model is built the 

ultimate goal consists in developing the most simple model possible, but still able to characterize 

the physical phenomena involved in the problem. In a nutshell, referring to a quote attributed to A. 

Einstein, “[a model] should be as simple as possible but not simpler”. This translates to the 

necessity of models that predict quickly and accurately the behaviour of complex engineering 

systems. Up to now, fast and accurate solutions of complex models are usually achieved at the 

expense of high computational efforts by means of high performance computational platforms. 



Such a drawback is particularly relevant in the field of energy systems modeling. In particular, we 

can identify three challenging scenarios associated with modeling of energy systems:         

 Performance prediction. This represents the most straightforward modeling approach; it 

consists in using models to quantify the performance of the energy systems. Frequently, 

performance prediction is carried out to test novel configurations (i.e. prototypes) of the 

studied system before their actual fabrication. Established modeling strategies for 

performance predictions are black box models [2] and  computational fluid dynamic (CFD) 

models [2,3]. In addition, also models at the molecular level [4] have been more frequently 

used in the last years. In the framework of performance prediction modeling challenges stem 

from the multiphysics, multiscale and coupled phenomena involved in advanced energy 

systems. This results in non-linear models with a fine resolution of both space and time 

scales leading to a severe computational burden (i.e. high computational costs). 

 Design optimization. In the area of energy systems a central task consists in devising 
systems which accomplish a stated goal in the best possible way. In other terms, the design 

of optimal systems. Traditionally, design optimization is performed through a combined use 

of parametric modeling and optimization algorithms [5]. In principle, each feasible design, 

identified by a specified set of parameters (i.e. design variables), has to be evaluated to find 

the optimal one. This requires the direct computation of a solution of the associated model 

for each possible combination of the values of the design variables. Although optimization 

algorithms facilitate such a search, this traditional approach becomes soon inapplicable as 

model complexity and number of parameters increases. For such a reason optimizations are 

commonly performed using black box models [2,5], which ease the computational cost but 

lack of accuracy. 

 Control and optimal operation. Once an energy system has been design it is necessary to 
operate it in the best possible way. Namely, the system should be controlled in such a way 

that optimal performance are achieved for the entire spectrum of operating condition it may 

face. Fast computations are a necessity in the field of modeling for control purposes. In fact, 

predictions by modeling should be achieved in real-time to account variable, often off-

design conditions that the systems may encounter. In such a framework, black box models 

and transfer function are the established approaches to modeling for control purposes. Such 

goal oriented models achieve good computational performances at the expense of accuracy. 

In fact black box models and transfer function commonly steam from over simplified 

physics or phenomenological approaches. Thus, they often fail when used outside the 

framework that served to derive them.               

While the previous list is far from being exhaustive, it illustrates that challenges in modeling energy 

systems are characterized by the lack of methods that combine accuracy, fast computation, and 

flexibility in the same framework. In this work we present an application of proper generalized 

decomposition (PGD) [6,7] for the analysis of a sensible thermal energy storage system. The 

analysis is aimed to show the great potentiality of PGD as a model-order reduction technique. 

Furthermore, we illustrate how PGD allows to account the design parameters a-priori in a 

generalized solution. These feature of PGD make it an ideal method for both design optimization 

and control purposes. In the next section a brief overview of fast computation methods is presented 

introducing model order reduction (MOR) techniques to which PGD belongs to. 

1.2 – Model order reduction for fast computations 

Fast calculation methods have been developed by humans throughout the ages. The period around 

2700 B.C. saw the first use of the abacus, a counting frame used my merchants to facilitate quick 

calculations according their sexagesimal number system [8]. Subsequently, abaci appeared in 

various other civilizations to help in performing arithmetic calculation. Soon other forms of 



“computational devices” for quick and flexible calculations appeared in the hands of engineers. 

Charts and nomogram are examples of such devices. They represents mathematical relations, or 

broadly speaking solutions for a given model, in a graphical way, enabling engineers fast 

calculations. 

 

Fig. 1.  Image reduction (i.e. compression) by POD. a) original image, b) contains 3% of original 

image, c) contains 10% of information of the original image.  

Model order reduction represents a modern approach for developing simple, i.e. inexpensive, 

mathematical models. The ultimate goal of MOR is to reduce the complexity of dynamical models, 

while preserving the dynamical behaviour as much as possible [9]. Over the last three decades 

various MOR techniques have been developed such as, meta-models, response surface method, 

proper orthogonal decomposition (POD) [10]. Such methods share the common feature of 

extracting essential information from a pre-existing full description (i.e. a full model) of the 

problem under investigation. As a sequent step, the extracted information is used to reduce the full 

model to a compact one, that is a reduced order model. Thus, the MOR methods listed above are a 

posteriori reduction methods. As an example, Fig. 1 shows a POD reduction of the ECOS 2015 

heading. It appears clear that 10% of the information contained in the original image is sufficient to 

identify the relevant information presented in the image. 

In the next section proper generalized decomposition (PGD) is used to investigate a sensible 

thermal energy storage system. The analysis illustrates the attractive features of PGD: 1) the 

capability of performing a-priori model order reduction; 2) the ability of solving generalized 

problems which include design parameters as further dimensions beside space and time; 3) the 

reduced computational cost.   

2. PGD for a sensible thermal energy storage system 

2.1. Model reduction 

Sensible thermal energy storage exploits the heat capacity of the medium to store energy in the form 

of sensible enthalpy. Thus, in a sensible TES energy is stored by varying the temperature of the 

storage medium. The latter is commonly in solid or liquid form. Common examples of storage 

media include water, oil, sand, rocks, and brick. The present analysis is focused on sensible TES by 



liquid media. Typical application includes TES for concentrated solar power (CSP) plants, 

buildings, combined heat & power (CHP), and district heating networks [11]. Figure 2 shows the 

TES system studied in this paper. It consists in a cylindrical tank filled by the liquid storage 

medium. Inlet and an outlet ports allows the injection/extraction of the storage medium as the TES 

system is charged/discharged. The system is a so-called thermocline TES. During operation, a sharp 

stratification occurs in the tank due to density variation of the liquid. Hot fluid in the upper part of 

the tank is separated from the cold fluid by a sharp temperature gradient region commonly named 

thermocline. The thermocline should be confined in the smallest possible region to avoid thermal 

degradation, which results in lower exergetic efficiency of the TES system. 

 

Fig. 2.  Schematic of the thermal storage unit. 

A one-dimensional model is here considered to describe the temperature evolution of the liquid 

medium in the tank. Fluid velocity is assumed uniform in the cross sectional area of the tank. 

Therefore, the temperature field is described by the following form of the energy equation: 
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where u is the cross-section average velocity, while density, specific heat and thermal conductivity 

of the fluid are denoted by ρ, cp, and k respectively. The following non-dimensional quantities 
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can be used to express Eq. (1) in its dimensionless form: 
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where uHPe is the Peclet number. 

Proper generalized decomposition aims at finding the solution of Eq. (2) in the following separated 

form [6]: 
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Where both the number of terms N and the functions Xi, Ci are unknown so far. These are found by 

a progressive enrichment of the solution [6,7,12] . This means that at step n the solution is enriched 

adding a new contribution to the available approximated solution at step n-1, namely: 
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The unknown functions appear in the form of a product resulting in a non-linear problem. An 

alternating direction strategy [6,12] is used to compute Xn and Cn. The strategy consists in two 

successive steps. The first step assumes  tCn
ˆ  known from the previous iteration. Such know 

function being denoted by  tS ˆ , or for simplicity S. Then, starting from S, the updated 

approximation  xR ˆ  of the function Xn is computed. The second step of the alternating strategy 

consists in updating S starting from the last evaluation of R. The process continues until R 

converges to Xn and S to Cn. Such a strategy leads to two separated differential problems, as 

illustrated in the following: 

 First step - compute  xR ˆ from  tS ˆ : 

At this step the solution of Eq. (2) is approximated by: 

   tSxRnn ˆˆ1    (5) 

in which function S is know from the previous iteration of the alternating strategy. Using the 

weighted-residual form [13] of Eq. (2), i.e. 
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and substituting Eq. (5) into the previous expression leads to: 
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The formulation for θn-1 that stems from Eq. (4) can be used to further elaborate the right-hand side 

of Eq. (7): 
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It is worth to noting some important features of Eq. (8). First, given the separated form of the 

solution (Eq. 5), the time derivative operates only on S, while the derivatives with respect of space 

coordinate x act only on R. Second, the right-hand side of Eq. (8) is known since it involves the 

approximated solution θn-1 which is known at the enrichment step n.   

The integration with respect of t̂ can be now performed. This is made possible once again because 

independent variables x̂ and t̂ appear in a separated fashion (Eqs. 4 and 5), and because at the first 

step of the alternating strategy function S is known. Such an integration leads to:  
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Or going back to the strong formulation: 
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where 
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Equation (10) represents a 1D boundary value problem that can be solved for R using any suitable 

numerical method (e.g. finite differences). Once R has been computed, the second step of the 

alternating strategy can be performed, namely: 

 Second step - compute  tS ˆ
 from the last evaluation of   xR ˆ : 

This step proceeds in a similar way as the first one: weak formulation (9) is used again, however 

now integration over x̂  is performed since R is known from step one. Such an integration leads to 

the following initial value problem: 
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The initial value problem (12) can be then solved using a standard integration scheme such as 

Runge-Kutta method.  

Step 1 and step 2 are iterated alternately until R and S converges to the desired functions Xn and Cn. 

The convergence of the alternating strategy is assessed comparing the solution found for two 

subsequent iterations [6]: 

         tSxRtSxR kkkk ˆˆˆˆ 11
 (14)  

Where index k identifies the number of iterations of the alternating strategy, while ε is a prescribed 

tolerance. In the present work L2 norm was used for Eq. (14).  

The complete PGD algorithm for the computation of the separated solution (3) it is here reported: 

Start n = 1 

Set k = 1 

Compute R form S (Eq. 10) 

Compute S from last R (Eq. 12) 

if  kkkk SRSR 11
 (Eq. 14) 

set Rk → Xn; S
k → Cn; 

return to start; n ← n +1; 

else 

k ← k+1 

end 

The enrichment procedure is stopped when the solution in the separate form (4) satisfies Eq. (2) 

within a prescribed error Ε(n). Here the following stopping criteria [6] for the enrichment procedure 

is adopted: 
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2.1.1. Results  

The sensible TES system for the district heating network of Turin (Italy) studied in [14] was 

considered to test the performance of PGD. The system is 30 m high and has a diameter of 3.5 m. 

the operating temperature range is 120 – 65°C (Tmax – Tmin) and it can provide up to 100 MWth for 

about 1 hour during discharge. Figure 3 depicts the time evolution of dimensionless temperature θ 

in the storage tank predicted with the PGD method. Storage tank was considered fully charged at t = 

0 while θ = 0 was enforced as boundary condition at 0ˆ x (inlet of the tank). An outflow boundary 

condition was prescribed at 1ˆ x . In Fig. 3 the solution predicted using PGD is compared with the 

solution obtained with traditional CFD finite-volume method. The latter was validated in [14]. It is 

clear that the number of terms N included in the separate form (3) drastically affects the accuracy of 

the solution. 80 terms make the PGD solution identical to the one obtained with traditional CFD. 

The accuracy of the PGD solution is further investigated in Fig. 4. The latter presents the error 

estimation E(N) as a function of N according to Eq. (15). Error is estimated to be ~10-2 for N = 20, 

while it drops to ~10-5 for a separated solution with 80 terms included. 

 

Fig. 3.  PGD solution with 20 terms (left) and 80 terms (right); (Δ) CFD solution. 

 

Fig. 4. Error estimation as a function of number of terms N in the solution. 



Normalized functions Xi and Ci obtained through by the PGD are illustrated in Fig. 5 for i = 1,…,4.  

In can be seen that the functions X1, C1 are constants in their corresponding domain since they are 

used to enforce boundary and initial conditions according to the procedure illustrated in [15]. 

Overall, the first terms in the separated solution account for the main dynamical features of the TES 

systems, while the higher-order Xi, Ci account for small perturbation of the overall dynamics. This 

can be also seen in Fig. 3. Twenty terms (N = 20) were sufficient to capture the main feature of the 

solution, however it was necessary to add other 60 terms (N = 80) to carefully predict the 

temperature time evolution in the sensible storage tank.  

 

Fig. 5.  Normalized PGD functions for i = 1,…,4. 

2.2. PGD as generalized solver 

In this section a PGD model of the TES system is developed to a-priori account in the solution the 

effect of possible design parameters or operation parameters. To this aim, energy equation (2) is 

here revisited with a different prospective. In such dimensionless equation the design/operation  

parameters are condensed in the Peclet number  ( uHPe ). Thermal α diffusivity represents a 

design parameter, in fact a different choice of the storage medium would imply a variation in the Pe 

number. In a similar manner a change of fluid flow velocity u in the tank involves a modification of 

the Pe number. This latter case represents a variation of the operating condition of the sensible 

storage system. Indeed, the rate of thermal energy retrieved from a thermocline TES, such as the 

one here considered, is adjusted by controlling the mass flow rate, and therefore the velocity, of the 

liquid storage medium in the tank. A generalized model which a-priori includes a spectrum of Pe 

numbers was developed considering Pe number as an additional “dimension” of the problem and by 

introducing it in the separated solution: 
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where now the extra set of functions Pi(Pe) appear on right-hand side to account for the extra 

dimension included of the problem. The calculation of Xi, Ci and Pi proceeds similarly to what 

illustrated in section 2.1. Namely, at each enrichment step n the the functions Xi, Ci and Pi are 

computed one by one through an alternating strategy. At the n-th enrichment step the solution is    

    )Pe(ˆˆ1 UtSxRnn    (17) 

where R, S and U are the approximations of functions Xi, Ci and Pi, respectively. The alternating 

strategy prescribes three steps: 

 First step - compute  xR ˆ from  tS ˆ  and )Pe(U  



 Second step - compute  tS ˆ  from  xR ˆ  (computed at step 1) and )Pe(U  

 Third step - compute )Pe(U from  xR ˆ (computed at step 1) and  tS ˆ  (computed at step 2) 

At each step the weighted residual form 
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is considered and Eq. (17) is substituted into it. Then, integration over two of the three dimensions 

is performed taking advantage of the separate form of the solution. Such an integration procedure is 

similar to the one is illustrated in Sect. 2.1 by Eq. (9). The key difference here consists in the fact 

that  Pe,ˆ,ˆ tx  now involves three dimensions, x, t, and Pe. Thus, at each of the three steps of the 

alternating strategy the integration is carried out over the two dimensions corresponding to the 

known functions. For example, at the first step integration over t̂ and Pe  is performed since R is 

calculated starting from S and U. Such a procedure leads to a boundary value problem (Eq. 19), a 

intial value problem (Eq. 20) and an algebraic problem (Eq. 21): 
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where 
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Equations (19-21) can be solved to compute R, S, and U. This calculation is iterated until R, S, and 

U converge to the desired functions Xn, Cn, Pn. The convergence criteria for the alternating strategy 

and for the enrichment procedure are the following: 
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2.2.1. Results  

The generalized solver described in the previous section is here employed to model the sensible 

TES system for 100 different Pe numbers in the range 2 – 20. This means that 100 scenarios 

corresponding to different design/operating conditions. Once the separated solution (16) has been 



calculated, each single case can be obtained as a simple post-processing of the generalized solution. 

For example, the cases corresponding to Pe = 200 and Pe = 20 are obtained as follow: 

       200Peˆˆ200Pe,ˆ,ˆ
1

 


ii

N

i

i PtCxXtx  (24) 

       20Peˆˆ20Pe,ˆ,ˆ
1

 


ii

N

i

i PtCxXtx  (25) 

That is, the generalized solution  Pe,ˆ,ˆ tx  is evaluated for the desired values of Pe number. This 

computation is at cost zero: no calculation are necessary because a generalized solution has been 

found since the beginning through the PGD solver. This is a key advantage of PGD that makes it an 

interesting technique for design analyses or optimization. Being the parameters/design variables 

included in the generalized solution, their optimal values according to a specified target (e.g. 

objective function) becomes a post-processing operation on the generalized solution which permits 

to avoid computational intensive optimization tasks. Figure 6 illustrates the two solutions 

mentioned above. A larger Pe number indicates a stronger advection contribution compared with 

the diffusive term (conduction). Thus, a sharper thermocline appears, as shown in the left plot of 

Fig. 6. 

 

Fig. 6.  PGD solutions for Pe = 200 (left) and Pe = 20 (right). 

The generalized solution (16) involves three kind of PGD functions. The first four for each kind are 

shown in Fig. 7. Finally, the error estimation E(N) as a function of N according to Eq. (23) is 

presented in Fig. 7d. An important feature can be noted; as the number of dimensions of the 

problem increases, a larger number N of terms is necessary to achieve an accurate generalized 

solution. Furthermore, the rate of convergence is slower. An improvement of convergence rate and 

accuracy is current under investigation by the author together with his colleagues.  



 

Fig. 7. a), b) and c) Normalized PGD functions for I = 1,…,4 (Eq. 16); d) Error estimation as a 

function of number of terms N in the solution (Eq. 23). 

3. Conclusions 
In this work we considered the transient behaviour of a sensible thermal energy storage system by 

using the proper generalized decomposition (PGD) method. This proceeds by enriching in sequence 

a solution in the separated form. That is, the solution consists in a sum of products of function of 

only one independent variable (e.g. x and t). This leads to separated one-dimensional models that 

can be solved numerical with a reduced computational effort. 

We also showed the PGD as a generalized solver for including a-priori in the solution 

design/operating parameters. Specifically, the model for the thermal storage system was solved 

considering 100 different values of Pe number. Each particular solution for a fixed Pe number was 

then found through a simple post-processing of the generalized solution. These features of the PGD 

method makes it an effective technique to perform optimization and sensitivity analyses of energy 

systems. This work represents a first step toward this goal.  

Nomenclature 
Ci PGD function [ ] 

cp specific heat [J/kg K] 

E error estimation [ ] 

k thermal conductivity [W/m K] 



Pe Peclet number [ ] 

Pi PGD function [ ] 

T temperature [K] 

t time [s] 

u velocity [m/s] 

Xi PGD function [ ] 

x coordinate [m] 

Θ dimensionless temperature [ ] 

ρ density [kg/m3] 
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