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Abstract: 

Pumping systems are responsible for large energy consumption in the industrial sector. A considerable 
amount of energy can be saved by changing pump rotational speed using Variable Speed Drives (VSD) 
when necessary. As an example, we present how VSDs can be applied to a pumping process in which two 
unequally sized parallel pumps are used to pump a certain fluid volume from one tank to another. The 
rotational speeds of the pumps are controlled simultaneously and independently according to the changing 
liquid levels in the tanks. The objective is to complete pumping with minimum energy consumption and in 
fixed time. We derive an optimal control law for rotational speeds using the Calculus of Variations and 
discuss the implementation of this law in actual control systems. 

Keywords: 

Parallel pumping, Reservoir filling, Variable speed drives, Optimal control, Calculus of variations. 

1. Introduction 
Operating pumps, fans, and compressors constitutes almost 20 % of the world’s electricity use, and 

in some industries even 50 % of electricity is consumed in these applications [1]. The possibility to 

save energy by improving the efficiency of the equipment is limited since the total efficiencies of 

the best pumps are already as high as 95 % [2]. However applying variable speed drives (VSD) in 

pumping systems has now been identified as the most effective way to save energy [3]. 

In reservoir pumping applications, a given amount of liquid is pumped from one reservoir to 

another, for example, in filling and emptying a water storage tank and pumping waste water. In 

reservoir filling, optimal pump rotational speed control has been studied both analytically and 

experimentally. Bene and Hős [4] derived an analytical expression for rotational speed yielding 

minimum specific energy under certain simplifying assumptions about the shape of pump 

characteristic curves. Tamminen et al. [5] presented an implementation of minimum specific energy 

control using a programmable VSD, and later on Ahonen [6] determined experimentally the time 

and energy consumption of the reservoir filling process for different fixed rotational speeds. The 

drawback of considering only pumping energy is that rotational speed becomes low and pumping 

time long. In practice, the pumping time may be limited. Karassik et al. [7], p. 11.15, suggested that 

a constant flow rate could be used in reservoir pumping applications, which is clearly correct if the 

surface levels do not change during the process. In an earlier study [8], we considered minimizing 

energy consumption in this process when process time is fixed and showed that maintaining a 

constant flow rate is indeed a good compromise solution for energy and time. Besides, pump 

reliability remains high. 

Parallel pumps are used to manage varying flow rates, for example, in waste water pumping stations 

[9]. Redundant parallel pumps increase the flexibility and reliability of the process because one 

pump can easily be disengaged for maintenance. Various control schemes and optimization criteria 

have been used to optimize parallel pumping systems. For instance, two parallel pumps can be 



 

 

controlled so that one is driven at full speed whereas the rotational speed of the other is varied 

[3],[7]. To achieve energy efficient operation, da Costa Bortoni et al. [10] minimized the departure 

from the BEP in a two-pump system. Viholainen et al. [11] showed that energy consumption can be 

minimized by controlling the pumps simultaneously and independently. As with a single pump, 

control procedures of parallel pumps that focus only on energy result in low rotational speeds and 

long process times. When a time constraint is included, optimal control procedure is not obvious 

and must be found through mathematical analysis. 

The optimal control law derived for a single pump in reservoir filling [8] applies to equally sized 

parallel pumps when flow rate and power are divided by the number of pumps. With two unequal 

parallel pumps, the control procedure becomes more complicated because of more degrees of 

freedom. We present a simple mathematical result for optimal rotational speeds in this kind of 

simultaneous control. Our method does not yet take into account the possibility of shutting down 

either pump. 

 

Fig. 1. Parallel pumping between reservoirs. Reservoir shapes and sizes can be arbitrary. 

2. Pump and system hydraulics in parallel pumping 
To assess the energy savings achieved by lowering pump rotational speed, we must know the effect 

of this change on pump performance. Pump head and efficiency curves at the rotational speed n can 

be obtained from the curves that are known at some reference rotational speed nr. The change in 

pump head (pressure rise divided by ρg) and power when rotational speed and flow rate are changed 

can be described using the following affinity laws: 
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where Hr(Qr) and Pr(Qr) are the known head and power curves at the reference rotational speed nr, 

which is usually the maximum allowed rotational speed. According to above affinity laws, pump 

power is approximately proportional to the third power of rotational speed, which motivates 

lowering rotational speed with a VSD when possible. According to (1)-(3), the pump efficiency 

η=ρgQH/P does not depend on the rotational speed. However, in reality pump efficiency drops 

when rotational speed is reduced, which can be taken into account using the following equation 

[12]: 
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The pump operates at the intersection of pump and system head curves. The system curve is 

composed of a static head (Hs), which does not depend on flow rate, and a frictional head, which 

does. For simplicity, we assume that frictional head is quadratic with respect to flow rate: 

2KQHH s 
 (5)

 

We study a process with two parallel pumps, whose characteristic head curves, which correspond to 

reference speeds n1r and n2r, are shown in Fig. 2. When several pumps operate in parallel, every 

pump has the same head, and their flow rates are additive. However, a pump in parallel can operate 

only when system head is lower than shut-off head. This means that if the former exceeds the latter 

of pump 2, H2,SO, pump 2 must be shut down to prevent backflow and pump failure. When static 

head is Hs,min, flow rate through the example system is Q=Q1+Q2, which depends on the rotational 

speeds of pumps 1 and 2: 
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where H1(Q,n1) and H2(Q,n2) are pump head curves from (2). The reference head curves H1r and H2r 

are given later in Section 5. The operating point (Q,H) of two parallel pumps at given rotational 

speeds of n1 and n2 can be solved iteratively from (1)-(2) and (5)-(6) when the system head H is 

given. 

 

Fig. 2. Operating point of a parallel pumping system and two system curves corresponding to low 

(Hs,min) and high (Hs,max) static heads. 

The total power of two pumps in parallel depends on the operating point: 
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The time and energy consumption of a pumping process can be obtained by integration over the 

process 
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where the time increment dt has been expressed using the change in the static head (or surface 

levels): 
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The reservoir free surface areas A1 and A2 can change with static head. 

3. Calculus of Variations 
In the optimal control of the parallel pumping process in Fig. 1, energy consumption in (8) is 

minimized and time in (9) is a constraint. Both are functionals of rotational speeds n1 and n2; that is, 

they depend on the rotational speed at every time instance of the process. Such an optimization 

problem involving functionals can be treated using the Calculus of variations, whose following 

basic theory can be found, for example, in [13] and is applied later on. 

Consider minimizing the functional F under the equality constraint G: 
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where f and g are known functions and y is the unknown function. The (Gateaux) variation of F(y), 

which is equivalent to a conventional derivative in the analysis of functions, is 
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where y is an arbitrary function in the same interval as y. The minimum of F(y) occurs when the 

variation is F(y;y)=0 for every y. By applying this condition, we get the necessary condition for 

optimality: 
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It remains to find the function y and constant C such that (14) and (12) hold. 

If functionals F and G (and functions f and g) depend on two unknown functions, y1 and y2, the 

above result of the constrained case becomes 
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Functions y1 and y2 are optimal if in addition to (15) the constraint G(y1,y2)=0 is satisfied. 

4. New Control Procedure for Parallel Pumping 
In continuous pumping processes. where the objective is to maintain a nearly constant head with a 

changing flow rate or a constant flow rate with a changing head, pumping time is not an important 



 

 

issue. On the other hand, in batch transfer systems, where a given amount of liquid is pumped from 

one tank to another on a regular basis, process time matters. In a representative pumping process in 

Fig. 1, the purpose is to fill the tank so that static head increases from Hs,min to Hs,max. Pumping 

should be performed with minimum energy, while the process time is fixed at T0. The rotational 

speeds of both pumps must be controlled optimally throughout the process. This optimization 

problem can be stated as 
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The optimal control law for pump rotational speeds is obtained from (15), where f and g are 

replaced by the integrands of (8) and (9), and where y1 and y2 correspond to rotational speeds n1 and 

n2. These equations are equivalent to minimizing (P+C)/Q throughout the process with a fixed value 

of C: 
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where P and Q are the total power and flow rate of the pump pair. The minimization can be 

performed using, for example, the Sequential Quadratic Programming (SQP) method. The Euler-

Lagrange multiplier C in (17) represents the sensitivity of energy consumption to process time. It is 

unknown together with pump rotational speeds. In practice, the optimal operation must be 

calculated several times to find the correct value of C and thus the correct process time. The 

numerical solution procedure is further explained below. 

Several iterations are required to apply the optimal control law (17). In the innermost iteration loop, 

we solve the operation point from (1)-(2) and (5)-(6) when the pumps’ rotational speeds are given. 

In the middle loop C is given, and optimal rotational speeds n1 and n2 are solved from (17) for 

sufficiently many static heads between Hs,min and Hs,max. After this, total energy consumption and 

process time are obtained by numerical integration of (8) and (9). Finally in the outermost loop, we 

search for the value of C that gives T-T0=0, that is, the correct process time. Next, we show a simple 

example of two parallel pumps controlled according to this algorithm. 

5. Example 

5.1. Initial values 

In the example process in Fig. 3, two unequally sized parallel pumps, pump 1 and pump 2, pump 

100 m3 of water from a large reservoir (A1=∞) into a tank with a cross sectional area of A2=20 m2. 

The static head at the start of pumping is Hs,min=2 m, and the pumping ends at Hs,max=7 m. The 

friction constant in (5) is K=2000 s2/m5, and the fixed target pumping time is T0=1120 s. 

 

Fig. 3. Example of a parallel pumping system. 



 

 

In this example, the reference rotational speeds are those corresponding to the head curves in Fig. 2: 

n1r=1500 rpm and n2r=1500 rpm. The reference head curves are quadratic functions: 

2
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where a0=36 m, a1=0, a2=-6000 s2/m5, a3=28 m, a4=0, and a5=-2200 s2/m5. By combining (1)-(2) 

and (18)-(19), the pump heads at rotational speeds n1 and n2 and flow rates Q1 and Q2 become 
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With the help of (20) and (21), the operating point, that is, the total flow rate Q and head H, can 

now be solved by iteration from (5)-(6). The pump efficiencies at reference rotational speed are also 

approximated with quadratic functions, which gives us: 

k

rrr

n

n

n

n
Qb

n

n
Qbb 










































1

1

2

1

12

12

1

1
1101 11  (22) 

k

rrr

n

n

n

n
Qb

n

n
Qbb 










































2

2

2

2

22

25

2

2
2432 11  (23) 

where b0=0.14, b1=80, b2=-350, b3=0.15, b4=35, and b5=-500. The constant k in (22) and (23) is 

0.15 for both pumps. The pump power required in (17) is calculated from (7) using the above head 

and efficiency curves. We note that at low rotational speeds, that is, n<0.7nr, pump efficiency drops 

considerably, and (22)-(23) do not hold. 

5.2. Results 

As the surface levels change in the tanks, also optimal rotational speeds and flow rates change. The 

optimal path of the operating point is calculated in 20 different static heads spaced evenly between 

initial Hs,min=2 m and final Hs,max=7 m values using the procedure developed in Section 4. Process 

energy consumption E=63.9 MJ and time were obtained by numerically integrating (8) and (9) over 

the found operating points. The value of C=41310 W corresponds to the desired process time of 

T=1120 s. 

The individual flow rates of pumps 1 and 2 during the optimal process are shown in Fig. 4. The 

system flow rate, which is the sum of the flow rates of the parallel pumps, can be seen to connect 

the initial and final system curves. The flow rate of pump 1 decreases and that of pump 2 increases 

slightly during the process; as a result, the total flow rate remains almost constant. In fact, keeping 

the flow rates of both pumps constant during the process does not significantly increase the energy 

consumption, as observed also in case of a single pump [8]. However, this control is not possible if 

either pump reaches its maximum allowed rotational speed. It is also possible that one of the pumps 

must be shut down because of too high a static head or started only after the other pump has been 

running for a while. We did not take these conditions into account. 

Figure 5 shows the optimal rotational speeds as a function of static head. The rotational speed of 

pump 2 increases almost linearly from 1308 rpm to 1453 rpm while pump 1 operates at a higher 

speed. In this example, the time limit 1120 s is so strict that pump 1 reaches the maximum 



 

 

rotational speed limit of 1500 rpm when static head is 5.4 m. To minimize the process time, both 

pumps must run at the maximum allowed speed (1500 rpm) throughout the process. This process 

takes 1047 s time and requires 68.4 MJ of energy. 

In the power curve method, the pump flow rate Q and head H are calculated from the affinity laws 

(1)-(3) using the values of power P and rotational speed n which are obtained from VSD. Flow or 

pressure measurements from the system are not necessary. For a single pump, minimum specific 

energy control can be implemented in a VSD by varying rotational speed in small steps dn to 

minimize P/Q [5]. With a time limit, the objective function is (P+C)/Q, where C is also unknown 

[8]. With two parallel pumps, there are three unknowns: n1, n2, and C, see (17). However, it may not 

be possible to optimize using a VSD system without measuring the system head. The power 

estimated by a VSD fluctuates, and the mean value can be in error by 2 %. Furthermore, the 

function (P+C)/Q is very flat around its minimal points; in our example a 2 % change in (P+C)/Q 

corresponds to more than a 100-rpm change in rotational speeds. 

The flow rate of a pump can be obtained also from the pump head curve using a measured pressure 

difference over the pump. This is known as the head curve method. Even though the estimation 

accuracy can be improved by combining the information from head and power curve methods, it 

might not be enough to reliably minimize (P+C)/Q. We believe that the best way to implement the 

proposed control law is to calculate optimal rotational speeds as a function of static head, as 

presented in this paper, and program rotational speed directly into the VSD as a function of process 

time or measured static head. However, the system curve must be known to perform the 

calculations. 

 

Fig. 4. Optimal flow rate and head of parallel pumps in an example reservoir filling process. The 

system curves correspond to the low (Hs,min) and high (Hs,max) surface levels. 



 

 

 

Fig. 5. Optimal rotational speeds of parallel pumps as a function of surface level (static head). 

6. Conclusions 
To address the problem of high energy consumption in pumping systems, we present an optimal 

control scheme for operating parallel pumps. This scheme is intended for batch-wise processes, for 

instance, for filling or emptying a tank in a waste water process, where process time is limited. We 

have presented an analytical control law (17) that gives optimal rotational speeds individually for 

both pumps throughout the process. The results calculated from the algorithm can be implemented 

in modern VSD systems that allow sensorless estimation of the pump’s operational state. 

A calculation example shows that the optimal flow rates of the pumps are almost constant during 

the pumping process. Because the objective function in the control law is very flat around its 

minimum, almost minimal energy consumption can be achieved by maintaining constant flow rates 

for both pumps throughout the process. However, this simple scheme is not possible if either pump 

must be shut down or run at the maximum allowed rotational speed to satisfy the process time limit. 

Because of the flatness of the objective function, large changes in the pumps’ rotational speeds lead 

to only small changes in energy consumption. This is not desirable in sensorless pump control, 

since the rotational speeds would have to be varied in large steps to noticeable change the specific 

energy. To guarantee smooth operation, we recommend that optimal rotational speeds be 

numerically calculated in advance and programmed in the VSD. Soft pump starts, smooth 

operation, and high efficiency all promote high pump reliability. High pump reliability can be as 

equally an important criterion as low energy consumption, because the costs of pump failure can 

well exceed those of pump operation. 

The optimal control law for parallel pumps was derived based on a corresponding result for a single 

pump. This analysis might be further extended to two unequally sized pumps operating in series. 

Analysis of pumps in series combined with the present results could allow optimization of a more 

complex pumping system in terms of energy and time. 
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Nomenclature 
A1, A2 Free surface areas, m2 

VSD Variable Speed Drive 



 

 

BEP Best Efficiency Point 

C Euler-Lagrange multiplier, (17), W 

E  Energy consumption of pumping process, (8), J 

g  Gravitational acceleration, 9.81 m/s2 

H Total head, (1b) and (4), m 

Hs Static head, m 

Hs,min Static head at the beginning of process, m 

Hs,max Static head at the end of process, m 

k Constant in (4) 

K Frictional constant in (5), s2/m5 

n Rotational speed, rpm 

P Pump power, (7), W 

Q  Flow rate, m3/s 

t Time, s 

T  Time of pumping process, (9), s 

T0 Target time for pumping process, s 

V Volume of fluid pumped, m3 

 

Greek Letters 

ρ  Density of fluid, kg/m3 

η Pump efficiency 

 

Subscripts 

r  Reference point 
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