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Abstract: 

To study the relationship of the conventional power plant and the pollutant emission restrict, a simulated 
thermodynamic system model of traditional supercritical coal-fired units coupled with environment protect 
equipment is designed on the platform of Ebsilon. A multi-objective algorithm model is established to weigh 
up the relationship between boiler efficiency and environmental impact of pollutant. Practical operating 
parameters of an actual Chinese power plant are set as the reference state of simulation model, which can 
be summarized as: load rate, ambient state, fuel composition. The pollutant emission of NOX, SOx and dust 
is acquired with the help of support vector machine (SVM) from the historical record of that power plant. The 
restriction of pollutant emission in Chinese newly policy is taken into account as constraints condition. By 
considering energy and environment as the multi-objective, the simulation, which evaluates the solutions by 
interfacing with the programmed optimization algorithm, is developed. And corresponding total system 
performance and characteristic of pollutant emission in flue gas is derived. The result show that the 
performance of system and environment protect equipment will be influenced as boundary conditions 
changed. Boiler efficiency can reach about 93.8% with minimum environmental impact in the case of our 
testing power plant. 
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1. Introduction 
The optimization of thermal power generation usually concentrates on the boiler efficiency, 

economic and environmental aspects. Specifically the objective of boiler efficiency, abided by 

thermodynamic laws, should be the chief target for analysis. And when the investment or retrofit of 

equipment is considered, an economic objective indicator is usually introduced. Moreover, if the 

pollutant emissions should be taken into account, an environmental indicator needs to be defined to 

evaluate the effect of pollutant emission to the ambient. 

Multi-objective optimization techniques optimize the operation performance according to more than 

one objective at a time, which is quite suitable when we concerning efficiency, economy or 

environment at the same time. The multiple objectives, however, may perform opposite 

characteristics when selecting the optimized operating state, which makes it controversial to 

identify the better situation. Hence, the concept of Pareto optimal solution, also called Pareto 

frontier, is introduced to consider the multiple objectives simultaneously. The so called Pareto 

optimal solution basically refers to the solution that no other feasible solution has a strictly better 

performance at least in one of the objectives[1]. It is wise to search the Pareto frontier by heuristic-



based evolutionary algorithm[2,3]. Multi-objective evolutionary algorithms (MOEAs) has been 

proposed and developed continually[4-6]. For instance, one study [7] shows how a thermal system 

design can be optimized using energy, economy and environment as separate objectives. 

Evolutionary algorithm has been adjusted to find the surface of optimal solutions defined by three 

objective functions simultaneously. And Dincer[8] investigated exergoenvironment analysis and 

optimization of a cogeneration plant system using multimodal genetic algorithm. Actually, single-

objective optimization also can deal with multi-objective problem since it can weigh the multiple 

objectives into an overall single-objective function. 

Data mining has been used in the optimal design of coal-fired power plants years ago. Correlation 

analysis of operational data is used in [9] to establish the correlation ship between boiler efficiency 

and exhaust temperature. Artificial Neural Network (ANN) has been widely used in the complex 

nonlinear system and applied in energy consumption of power unit with gratifying successes. In 

reference [10], the relationship between unburned carbon content in fly ash and the emission of NOx 

is analysed. ANN method, however, is lack in computational complexity and have excessive 

studying effect. To overcome these problems, SVM is first introduce in 1992[11] and has acquired 

significant effect in the study of thermal power generation[12]. 

Actually, according to the Emission Standard of Air Pollutants for Thermal Power Plants (GB 

13223-2011) in China, all the coal-fired power plants should operating under the new pollutant 

emission limit value after Jan. 2014. Therefore, pollutant emission situation under newly strict 

standards is worth to be studied. As far back as 1997, Rosen and Dincer have introduced and 

discussed the relationships between exergy and environmental impact[13].Reference [14] investigated 

the economic parameters variations on the carbon dioxide emission and fuel consumption of the 

power plant to increase exergy efficiency while decreasing CO2 emission. In the optimization 

approach of reference [15], the exergetic, economic and environmental aspects have been 

considered. In their multi-objective optimization, the three objective functions, including the boiler 

efficiency, total cost rate of the system production and CO2 emission, have been considered.  

For each multi-objective optimization problem, objective functions should be determined first. In 

this paper, we choose boiler efficiency as one of the thermodynamic objectives. Support vector 

machine (SVM) and Ebsilon simulation is used in the optimization process. And environmental 

impact of pollutant has been chosen as one of the objective functions. To our knowledge, this paper 

is the first attempt to analyze the coal fired power plant according to thermodynamics and pollutant 

emission objectives with the latest Chinese policy. 

2. Coal-fired power generation system 

2.1. Plant model 

The supercritical coal-fired power plant used to perform the optimization is shown in Fig.1, which 

is a conventional single-reheat water cooling plant with a capacity of 600 MW. To calculate the 

environmental effects of pollutant emission, coal with a lower heating value (LHV) of 22000kJ/kg 

and an ultimate analysis of C(57.5%),H(3.1%),O(2.8%),N(1.1%),S(0.91%),H2O(7.1%) is used in 

reference state. The main steam condition and reheated steam condition is set to 24.2MPa/566℃ 

and 4.2MPa/566℃. 



 

Fig. 1.  Schematic diagram of the power plant under consideration 

The main stream generated in the boiler is expanded in the high-pressure turbine (HPT) and then is 

reheated. The reheated steam passes through the intermediate-pressure (IPT) and the low-pressure 

turbines (LPT) and finally being condensed in a surface condenser (COND) which is used to 

remove the low temperature heat to the environment. HPT is split into two parts to realize the 

regenerated cycle and so does the IPT and LPT, which is divided into two and four parts, 

respectively. The feedwater is preheated in H1-H3, deaerator (DA) and H5-H7 to increase the 

thermodynamic average temperature. The flue gas, which has generated in combustion chamber, 

pass through SCR, air preheater (AH), ESP and FGD. Environment protection devices (SCR, ESP 

and WFGD) to minimize the damage to the environment are considered as dissipative devices. 

Carbon capture and storage devices are not considered in this paper. 

2.2. Method of exergy analysis 

Exergy analysis is used to evaluate the performance of each component in this real coal-fired power 

plant. The method mainly base on the reference[16].It is assumed that reference environmental 

temperature of the system boundaries is 1bar/0℃.Therefore, exergy of each steam can be calculated 

and exergy balance of each component can be expressed as: 

, , ,F k P k D kE E E   (1) 

Where subscripts F, P and D represent as fuel exergy, product exergy and exergy destruction of kth 

component, respectively. When it comes to the overall system, however, the exergy loss term 

appears and the exergy balance equation becomes: 

, , , ,F sys P sys D sys L sysk
E E E E    (2) 

The exergetic efficiency of kth component is defined as: 
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Another crucial ratio is defined to identify the part of total fuel exergy input destroyed within the 

kth component, which is defined as: 
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3. Multi-objectives optimization 
The heuristic-based evolutionary algorithm which is interfaced with Ebsilon and the definition of 

energetic and environmental objectives as well as input variables are introduced in details in this 

section. 

3.1. Defining the energetic and environmental objectives 

The boiler efficiency, expressed as (5), is fairly suitable as the definition of energetic objective 

when the environmental impact is considered at the same time 

1
b

r

Q

Q
   (5) 

Where b netW  is the boiler efficiency. 1Q  and rQ  are the boiler input heat and effective used heat of 

per kg fuel (kJ/kg). LHV  is the low heating value of corresponding coal. 

The environmental objective is defined to describe the total impact of pollutant emission, which 

including the amount of NOx, SOx and dust. 

env dx x x xNO NO SO SO ust dustI C C C      (6) 

Where the objective function envI  expresses the environmental impact due to NOx, SOx and dust.

xNOC , 
xSOC  and dustC  denote the effluent concentration of NOx, SOx and dust (mg/Nm3), separately. 

xNO , 
xSO  and dust  are appropriate weighting factors to describe the impact of per mg pollutant by 

multiplying each effluent concentration by their corresponding weighting factors. Regrettably, these 

weighting factors are assigned more or less arbitrarily by our analyst, which may let the result 

influenced by the values of weighting factors. 

3.2. Input variables and constraint conditions 

The input variables involve various types of boundary conditions, such as load rate, ambient state 

and fuel composition. Science the input variables vary during the multi-objective optimization 

procedure, constraint conditions of each parameter are listed in Table 1, which mainly based on the 

historical data. The parameters of pollutant emission are concerned as the input variables as well, 

which is restricted to the requirement of GB13223-2011. Hence, the concentration of NOx, SOx 

and dust in flue gas is limited in 100 mg/Nm3, 100 mg/Nm3 and 30 mg/Nm3 separately. 

 

 

 

 

 

 



Table 1.  List of input variables and its constraint conditions 

Input variables Symbol Constraint conditions unit 

concentration of NOx in the inlet of SCR ,SCR inc
 

200~450 mg/Nm3 

concentration of NOx in the outlet of SCR ,outSCRc
 

<100 mg/Nm3 

concentration of SOx before desulfuration 
x ,SO inc  1200<2400 mg/Nm3 

Load of boiler netW  540~650 MW 

Temperature of primary air at the outlet of APH ,APH outt  270~300 ℃ 

Opening degree of primary Air ,A Bx x  30~70 % 

Temperature of coal mill ,mill outt  20~80 ℃ 

Outlet temperature of main steam ,sh outt  500~600 ℃ 

Temperature of reheat steam ,rh ot
 

500~600 ℃ 

Pressure of main steam ,sh oP
  

230~330 Bar 

3.3. Algorithm and interface with SVM and Ebsilon 

Genetic algorithm is the most widely applied one for solving multi-objective optimization. And the 

structure of MOEA used in the paper is shown in Fig. 2. In first step, totally 2×Ns feasible 

solutions are randomly generated as the first initialized generation. Ns represent the number of 

individuals in each generation and are calculated as 100 in this case. Ns parent population is 

selected among 2×Ns initial population with the same probability to process a parent population. 

Then the parent population is reproduced to generate the offspring population by a crossover and 

mutation strategy. The objective function values of offspring population are then evaluated with the 

help of Ebsilon and SVM, which is shown in details in Fig3. Then Ns best ranked solutions are 

selected to survive. If the termination condition is met, the frontier solutions are presented; 

otherwise the surviving solutions become the starting population for the next generation. 
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Fig. 2.  Scheme for the multi-objective evolutionary algorithm used in this paper 

For each individual in any generations, objective function values is calculated from its input 

variables in the process of Fig. 3.This process was completed by interfacing with SVM and Ebsilon 



when the values of objectives are needed. Environmental impact of pollutant is obtained according 

to (1), the pollutant parameters of which are acquired by SVM. And the simulation procedure to 

calculate the energetic objectives was performed by a simulation and optimization software named 

Ebsilon Professional[], which is calculated according to the thermodynamic laws. 
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Fig. 3.  Scheme for getting the objective function values by SVM and Ebsilon 

More specifically, all the operating parameters have been set in Ebsilon as the reference state based 

on the actual values of real power plant in a steady state. To optimize the operating situation from 

the perspective of boiler efficiency and the impact of pollutant, a group of parameters have been 

selected as the input variables (e.g. the out let pressure of each turbine, parameters of main and 

reheat steam etc.). Besides, pollutant parameters are also the input value for Ebsilon to complete to 

simulation procedure. By changing the values of input variables in genetic algorithm, Pareto 

frontier can be acquired to determine the optimum operating parameters.  

Since it is rather difficult to accurately predict the pollutant emissions from simulation model, SVM 

is used to estimate the pollutant parameters. From which we acquired the necessary input variables 

both for simulation model and the objective function of environmental. The training model of SVM 

to establish the concentration of NOx, SOx and dust based on the historical data of a 600MW 

power plant is shown in fig.4. 
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Fig. 4.  Model of SVM to analyse the environmental impact of pollutant 

Support vector regression (SVR) is the most widely used method for SVM, which could carry out 

nonlinear fitting between input vector x (input variables and operating parameters) and output data 

y (environmental objectives). In the training process, the historical data is regard as m samples with 

n dimensional vectors. Each sample is a real-time record by measuring that power plant once a 

minute. Each dimension refers to the values of one input variables or operation parameters. This 

concept can be expressed as 1 1(x , y ), , (x , y ) n

m m R R … , and fitting function can be written as: 

(x) (x)f b    (7) 



Where x is input vector including input variables and operating parameters, and (x)  is nonlinear 

function for mapping.   is weight vector. Totally three groups of (x)f  have been trained to 

calculate the concentration of NOx, SOx and dust. 

4. Result and discussion 

4.1. Exergy analysis 

It can be seen from Table 2 that nearly 37% of the total input fuel exergy is destroyed in the furnace, 

which is mainly result from the combustion process in the reaction zone. Besides, a high 

temperature difference will also cause unwanted irreversible exergy loss. Other components with 

higher exergy loss include air preheater, heat exchanging equipment in boiler system and turbines. 

The irreversibility of one component shows the priority when improving the efficiency of overall 

system. Boiler system, especially the reaction zone, should be the first priority for the reduction of 

the performance of power plant. It should be noticed that Air cooler, SCR, ESP and FGD are treated 

as dissipative devices and are not listed in Table 2. 

Table 2.  Results of exergy analysis of each component 

 

Comp Name ,F kE (MW) ,P kE (MW) ,D kE (MW) k  ,D ky  

Turbine 

system 

HTP1 172.06 163.52 8.54 95.04% 0.58% 

HTP2 39.38 37.18 2.20 94.41% 0.15% 

IPT1 118.92 112.94 5.98 94.97% 0.41% 

IPT2 89.48 84.94 4.54 94.93% 0.31% 

LPT1 104.09 95.92 8.17 90.81% 0.48% 

LPT2 77.62 70.49 7.13 92.15% 0.55% 

LPT3 62.41 48.28 14.13 77.35% 0.96% 

CP 7.62 6.53 1.09 85.70% 0.07% 

H1 13.90 12.04 1.85 86.66% 0.13% 

H2 23.70 20.39 3.31 86.02% 0.22% 

H3 25.97 23.08 2.89 88.89% 0.20% 

DA 24.68 22.10 2.58 89.53% 0.18% 

H4 37.03 33.53 3.50 90.55% 0.24% 

H5 70.52 65.89 4.63 93.43% 0.31% 

H6 31.91 30.17 1.74 94.56% 0.12% 

FWP 27.36 24.12 3.24 88.17% 0.22% 

Boiler 

system 

FURNACE 976.40 428.69 547.71 43.91% 37.11% 

ECO1 48.77 41.36 7.41 84.80% 0.50% 

ECO2 20.25 17.38 2.87 85.84% 0.19% 

APH 82.27 57.47 24.80 69.86% 1.68% 

IDF 13.86 11.98 1.88 86.42% 0.13% 

PSH 77.02 67.34  9.68 87.43% 0.66% 

SSH2 72.12 58.98 13.13 81.79% 0.89% 

FSH 65.69 55.91 9.78 85.11% 0.66% 

PRH1 83.21 70.47 12.74 84.69% 0.86% 

PRH2 26.54 20.68 5.86 77.91% 0.40% 

FRHC 62.65 52.60 10.05 83.96% 0.68% 

FRHH 23.83 19.40 4.43 81.41% 0.30% 

PAF 8.97 7.68 1.29 85.62% 0.09% 

SAF 8.75 7.49 1.26 85.59% 0.09% 

System( ,L sysE =129.06) 1475.75 589.66 757.03 39.96% 51.30% 

 



4.2. Algorithm and interface with SVM and Ebsilon 

Fig.5 presents the details of the optimization process for finding the frontier solution when 

considering energy efficiency and environmental impact. After 200 generations , the first 2×Ns 

initial population have converged and form an front, which result from a trade-off between 

minimum environmental impact and maximum boiler efficiency. It should be noted that the 

constraint conditions do not affect the mutation and crossover process. Therefore, the mutation and 

crossover operations assure the generation of almost any possible solution within the objective 

space. In the each generation, the solutions near the frontier of the decision space are preserved and 

the frontier gradually formed. The frontier can be visualized at the 30th generation but is not 

smooth enough. With continued evolution, the frontier solutions become more uniformly and 

densely dispersed, leading to a smooth frontier at the end. 
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Fig. 5.  Evolution result of Pareto Front 

All the solutions on the Pareto front, especially on the right-hand side of the minimum point of 

environmental impact, are significant in the decision-making process. The minimum environmental 

impact solution is acquired when the boiler efficiency is 93.8%. This point separates the frontier to 

the left-hand side and right-hand side. In the left hand side, the environmental impact gradually 

decreased with increasing boiler efficiency. And the curve seems to be flat around the point of 

93.8%, which means the solutions around this area can be regarded as optimal designs. In the right-

hand side, the two objectives oppose each other, forming a Pareto front where the environmental 

impact increases sharply with the increasing of boiler efficiency. 

4.3. Comparisons between the reference state and optimal designs 

Table 2 shows the key values of reference state of the actual power plant and the optimal values of 

simulation. Reference state is listed in the second column. The last three columns are three Pareto 

solutions near the minimum environmental impact point, which can be chosen as optimal designs. 

To minimum the environmental impact, the boiler efficiency is slightly decreased compared to the 

reference state. Actually, exergy destruction of boiler subsystem is about half of the total system 

fuel in reference state. In addition, the boiler efficiency of plant is 94% in this condition. The cost of 

energy and resources consumption for remove the pollutant only account for a little part in the 

thermodynamic viewpoint. The performance of system and environment protect equipment will be 

influenced as boundary conditions changed. Emission controlling equipment influences each other 

while single boundary condition varies, and the desulfurization subsystem in the terminal of flue 

gas process is affected notably.  



Table 3.  Comparisons between the reference values and optimal values 

 

reference 

state optimal designs 

 

1 2 3 

Boiler Efficiency/% 94 93.82 93.84 93.82 

average concentration of SOx in flue gas/(mg/Nm3) 24.08 22.75 22.68 22.12 

average concentration of NOx in flue 

gas/(mg/Nm3) 
31.89 27.59 30.82 28.67 

average concentration of dust in flue gas/(mg/Nm3) 7.76 7.68 7.79 7.53 

concentration of NOx in the inlet of 

SCR/(mg/Nm3) 
202.51 197.85 195.71 197.11 

concentration of NOx in the outlet of 

SCR/(mg/Nm3) 
47.97 45.94 45.18 45.50 

concentration of SOx before 

desulfuration/(mg/Nm3) 
2598.03 

2520.8

5 

2535.5

9 

2522.9

6 

Load of boiler/MW 600 614.27 603.90 613.37 

Temperature of primary air at the outlet of AH/℃ 25 24.26 24.31 24.39 

Temperature of main steam/℃ 560 564.19 565.06 565.74 

Temperature of reheat steam/℃ 560 565.94 566.02 565.96 

Pressure of main steam/MPa 24.2 25.92 25.93 25.99 

Opening degree of primary Air xA/% 55 54.14 53.05 53.46 

Opening degree of primary Air xB/% 55 54.05 53.05 53.21 

outlet temperature  of coal mill/℃ 25 23.94 24.00 23.97 

 

To be specific, the exergy destruction in the boiler system is significantly affected by the air 

preheating process. 

5. Conclusion 
Exergy analysis shows the energy saving potential of each component. Boiler system, especially the 

reaction zone, has largest operational exergy destruction. The optimal design of traditional coal-

fired power plants was optimized from the perspectives of efficiency and environment aspects. 

Genetic algorithm is used to analyze this multi-objectives problem. However, more accurate 

weighting factors to describe the impact of per mg pollutant are needed to describe the objectives 

with higher accuracy. 

The following conclusions can be drawn: 

(1) Exergy analysis shows that nearly 37% of total input fuel exergy is destroyed in the furnace, 

which is mainly result from the combustion process in the reaction zone. Boiler efficiency was set 

as one of the objectives, which can reach about 93.8% with minimum environmental impact in the 

case of our testing power plant.  

(2) In the optimal design, the energy-saving effects achieved as the boiler efficiency of the higher 

pressure and higher temperature steam extraction is much better than that of the reference state of 

steam extraction. 

 (3) It is concluded that the environmental impact can be reduced though the current industrial 

design is not far away from the optimal design. And it is not necessary to blindly improve the boiler 

efficiency as the pollutant effect will be increased dramatically.  

 

 



Nomenclature 

Letter symbols 

Greek symbols 

  exergetic efficiency 

Dy  exergy destruction ratio 

Subscripts and superscripts 

F fuel 

P product 

D destruction 

L loss 

Sys system 

k kth component 
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